
Evaluation of a Runtime Environment for

a Discontinuous Galerkin Solver for

General Hyperbolic Systems

Malcolm Roberts∗,1, Bruno Weber1,2, Philippe Helluy1,
Emmanuel Franck1

1University of Strasbourg and INRIA TONUS
2AxesSim

HPC Days Lyon, 2016-05-06

∗malcolm.i.w.roberts@gmail.com, www.malcolmiwroberts.com



Outline

I The discontinuous Galerkin method and OpenCL.
I schnaps: schnaps.gforge.inria.fr

I Benchmarking the code on CPU, GPU, and comparing
performance.

I Runtime environments:
I StarPU-SOCL
I StarPU

I Analysis of results.

Malcolm Roberts malcolmiwroberts.com

schnaps.gforge.inria.fr
malcolmiwroberts.com


Discontinuous Galerkin Method

We consider the general hyperbolic equation

∂tw +
k=d∑
k=1

∂kF
k(w) = S , (1)

in d dimensions. F is the flux and S the source term.

Examples:

I Maxwell’s equations

I MHD

I Vlasov equations

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Discontinuous Galerkin Method

The physical domain is divided into cells.

In each cell L, w is projected onto a finite set of basis
functions ψL

i (x):

(2)w(x , t) ≈
∑
i∈L

w i
L(t)ψL

i (x).

The evolution equation is approximated by∫
L

∂twψ
L
i −

∫
L

F (w ,w ,∇ψL
i ) +

∫
∂L

F (wL,wR ,nLR)ψL
i = SL

i ,

(3)
where nLR is the normal vector from cell L to cell R .

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


OpenCL

The DG formulation is good for conserving invariants and has
other nice properties, but it is computationally expensive.

Using OpencL to program for GPUs can reduce this cost:

I Fast coalescent memory access.

I Events to control program flow.

I We can run on GPUs, but also CPUs and MICs.

I A string composed of C-like code is sent compiled for the
device at run-time.

We use hexahedral elements to increase coalescence.

A macrocell/subcell structure further improves memory access.

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Array of structs of arrays

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Performance analysis of OpenCL implementation

10−1

100

ti
m

e
(s

ec
on

d
s)

101

refinement

C

OpenCL

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Performance analysis of OpenCL implementation

clFFT, an FFT library written in OpenCL by AMD.

10−4

10−3

10−2

10−1

ti
m
e
(s
ec
on

d
s)

102 103

problem size

CPU
GPU

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Performance analysis of OpenCL implementation

100

ti
m

e
(s

ec
on

d
s)

101

refinement

CPU
GPU

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Performance analysis of OpenCL implementation

We can conclude that:

1. The C code makes use of all the cores. Note that the C

code is not vectorized.

2. The C and OpenCL code speeds on the CPU are close for
large problem sizes.

3. The performance difference of schnaps between the CPU

and GPU is near what we should expect.

4. Thus, we claim that our code makes effective use of the
GPU.

We can further improve the code by profiling and improving
the costly steps.

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Run-time environments

Should we run on the CPU or the GPU?

Why not both?

Also, how can we write code that suits all of these platforms?

Solution: run-time environments.

I Each task is associated with one or more codelets:
I Test performance and then use the fastest!
I Examples: FFTW, Atlas.

I Distribute tasks to devices.

I Synchronize task execution and manage memory
transfers.

In particular, we look at StarPU.
Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Run-time environments: StarPU-SOCL

SOCL: StarPU On OpenCL.

The idea is that StarPU creates a fictitious OpenCL device.

I The device encompasses the CPU, GPUs, etc.

I SOCL manages kernel compilation for all the device.

I SOCL distributes tasks and manages memory.

I Little modification is required to an existing OpenCL 1.0
program.

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


SOCL performance, without extraction

Comparison of OpenCL (1 × K80) and SOCL (4 × K80)
performance, without interface extraction.

0

0.3

0.6

0.9

1.2

T
im

e
(s
)

OpenCL 1 GPU SOCL 4 GPU

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


SOCL performance, with extraction

Comparison of OpenCL (1 × K80) and SOCL (4 × K80)
performance with interface extraction.

0

0.3

0.6

0.9

1.2

T
im

e
(s
)

OpenCL 1 GPU SOCL 4 GPU

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Run-time environments: StarPU-SOCL

NVidia Visual Profiler (nvvp) for OpenCL:

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Run-time environments: StarPU-SOCL

NVidia Visual Profiler (nvvp) for SOCL:

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


SOCL performance

Analysis:

1. Kernel launch latency is an issue.

Possible solutions:
I Reduce length of event wait list.
I Move to an on-device queue, as in OpenCL 2.0.

2. There is also a large amount of memory transfer, whose
origin is unknown.

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


StarPU

GeForce GTX 780 Ti

0

30

60

90

120

T
im

e
(s
)

OpenCL
1×GPU

StarPU
1×GPU

StarPU
4×GPU

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


StarPU

CPU: 12 cores

0

100

200

T
im

e
(s
)

OpenMP
C CPU

StarPU
C CPU

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


StarPU

Analysis:

I We were not able to get good performance with
StarPU-SOCL or StarPU using multiple GPUs.

I StarPU was able to parallelize a small grid which our
OpenMP-C implementation didn’t handle well.

For GPU performance, there are a variety of possible solutions
to consider:

I Is there an issue with OpenCL events?

I Is CUDA a better choice for StarPU?

I Can we group tasks to reduce overhead? (Would the
reduction in granularity be a problem?)

Malcolm Roberts malcolmiwroberts.com

malcolmiwroberts.com


Conclusions

I Presented schnaps, a C/OpenCL implementation of the
discontinuous Galerkin method.

I schnaps.gforge.inria.fr

I Our implementation is efficient on CPU and GPUs.

I Presented initial results using the StarPU runtime
environment.

I Using multiple GPUs with OpenCL codelets hasn’t been
effective so far.

I StarPU was effective at parallelising the C code on the
CPU.

I We are looking at how we can improve multi-GPU
performance with StarPU.

Thank you for your attention!
Malcolm Roberts malcolmiwroberts.com

schnaps.gforge.inria.fr
malcolmiwroberts.com

