Parallel strategy and roofline analysis for a 3D code modelling edge plasma physics

M. Kuhn, G. Latu, N. Crouseilles, S. Genaud matthieu.kuhn@inria.fr

April 6, 2016

Context

My PhD

• Parallel computing and numerical methods for plasma boundary simulations

Goal

- Reduce execution times of an existing code Emedge3D
 - simulating plasma behavior at the edges of tokamaks

Challenges

- Very large problems at both spatial and temporal scales:
 - $T_{\max} >> 1$ and $\Delta t << 1$ (stability condition)
 - $N_d >> 1$ and $\Delta d \ll 1$, $d \in \{x, y, z\}$

Solutions

- Semi-implicit time integration to $\nearrow \Delta t$
- HPC to reach high resolutions in space

HPC for Emedge3D

Goal

• Goal: give a viable strategy for hybrid MPI/OpenMP parallelization in Emedge3D

Setup

- Study on a (3D) reduced model of Emedge3D, containing the two most challenging and time consuming spatial operators
 - the 3D diffusion $\nabla \cdot (A(x)\nabla .), \nabla = (\partial_x, \partial_y, \partial_z)$
 - the 2D advection $\{f,g\} = \partial_x f \partial_y g \partial_y f \partial_x g$

Outline

The advection-diffusion equation and numerical settings

2 Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP

Outline

1 The advection-diffusion equation and numerical settings

2 Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP

4 Conclusion and perspectives

SLAB geometry

 $z = \mathbf{Q}$ Periodic BC

Equation: reduced model of Emedge3D

$$\partial_t T + \{\phi, T\} + Q_{adv} = \nabla \cdot (A(x) \nabla T) + Q_{diff},$$

with

- T = T(t, x, y, z) the unknown
- 2D advection: $\{f,g\} = \partial_x f \partial_y g \partial_y f \partial_x g$
- 3D diffusion: 3×3 matrix A(x), $\nabla = (\partial_x, \partial_y, \partial_z)$
- $\phi = \phi(x, y, z)$ the electric potential (constant in time)
- $Q_* = Q_*(t, x, y, z), * \in \{adv, diff\}$ the source terms
- + analytical test case

Discretization

- As in Emedge3D, two discretizations in space:
 - ▶ real (x) and Fourier basis (y,z) for the diffusion $\nabla \cdot (A(x)\nabla .)$
 - \rightarrow finite difference order 2 (x) and spectral differentiation (y,z)
 - full real basis for the advection $\{f,g\} = \partial_x f \partial_y g \partial_y f \partial_x g$
 - \rightarrow Arakawa method order 2
 - \rightarrow to avoid a convolution $(\mathcal{O}(N_x \times N_y^2 \times N_z^2))$
 - \Rightarrow 2D DFT between operators

Discretization

- As in Emedge3D, two discretizations in space:
 - ▶ real (x) and Fourier basis (y,z) for the diffusion $\nabla \cdot (A(x)\nabla .)$

 $\rightarrow\,$ finite difference order 2 (x) and spectral differentiation (y,z)

• full real basis for the advection $\{f,g\} = \partial_x f \partial_y g - \partial_y f \partial_x g$

 \rightarrow Arakawa method order 2

 \rightarrow to avoid a convolution $(\mathcal{O}(N_x \times N_y^2 \times N_z^2))$

 \Rightarrow 2D DFT between operators

• Explicit discretization in time with Lie splitting:

• with
$$t^k = k\Delta t$$
 and $T^k = T(t^k)$

$$\label{eq:tau} \bullet \ T^* = T^k - \Delta t \left(\left\{ \phi, T^k \right\} + Q(t^k) \right)$$

$$\hat{T}^{k+1} = \hat{T}^* + \Delta t \nabla \cdot (A_x \nabla \hat{T}^*)$$

Outline

The advection-diffusion equation and numerical settings

Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP

4 Conclusion and perspectives

Sequential algorithm

$$\partial_t T + \{\phi, T\} = \nabla \cdot (A(x) \nabla T)$$

Time loop

for all time iteration *n* do $T^* \leftarrow T^n - \Delta t \{\phi, T^n\}$ $\widehat{T^*} \leftarrow DFT2D_{x,y}^{-1}(T^*)$ $\widehat{T^{n+1}} \leftarrow \widehat{T^*} + \Delta t \nabla \cdot (A_x \nabla \widehat{T^*})$ $T^{n+1} \leftarrow DFT2D_{x,y}^{-1}(\widehat{T^{n+1}})$ end for

Advection operator Discretization switch real to semi-spectral Diffusion operator Discretization switch semi-spectral to real

Sequential algorithm

$$\partial_t T + \{\phi, T\} = \nabla \cdot (A(x) \nabla T)$$

Time loop

for all time iteration *n* do $T^* \leftarrow T^n - \Delta t \{\phi, T^n\}$ $\widehat{T^*} \leftarrow DFT2D_{x,y}^{+1}(T^*)$ $\overline{T^{n+1}} \leftarrow \widehat{T^*} + \Delta t \nabla \cdot (A_x \nabla \widehat{T^*})$ $T^{n+1} \leftarrow DFT2D_{x,y}^{-1}(\widehat{T^{n+1}})$ end for

Advection operator Discretization switch real to semi-spectral Diffusion operator Discretization switch semi-spectral to real

Hotspot: 2D DFT computation

 $\ \, \mathcal{O}(N_x \times N_y \log(N_y) \times N_z \log(N_z)) \text{ vs } \mathcal{O}(N_x \times N_y \times N_z)$

MPI parallelization strategy

• domain decomposition along one spatial dimension

no overlap

MPI parallelization strategy

• domain decomposition along one spatial dimension

no overlap

MPI parallelization strategy

- domain decomposition along one spatial dimension
- no overlap
- $\Rightarrow\,$ read dependencies along spatial dimensions considered as blocking

```
\label{eq:advection} \begin{array}{l} \mbox{Advection (real space)} \\ \hline \mbox{for all } k \in 1..N_z \mbox{ do} \\ \mbox{for all } j \in 1..N_y, i \in 1..N_x \mbox{ do} \\ \mbox{Adv}[i,j,k] \leftarrow Stencil_{x,y}(T[i,j,k]) \\ \mbox{end for} \\ \mbox{end for} \end{array}
```

 $\frac{\text{Advection (real space)}}{\text{for all } k \in 1..N_z \text{ do}} \\ \text{for all } j \in 1..N_y, i \in 1..N_x \text{ do} \\ \text{for all } j \in 1..N_y, i \in 1..N_x \text{ do} \\ \text{Adv}[i,j,k] \leftarrow \text{Stencil}_{x,y}(T[i,j,k]) \\ \text{end for} \\ \text{end for} \\ \text{end for} \\ \text{for all } k \in 1..N_z, j \in 1..N_y \text{ do} \\ \text{for all } i \in 1..N_x \text{ do} \\ \text{Diff}[i,j,k] \leftarrow \text{Stencil}_x(\widehat{T}[i,j,k]) \\ \text{end for} \\ \text{end for} \\ \text{end for} \\ \text{for all } k \in 1..N_z, j \in 1..N_y \text{ do} \\ \text{for all } i \in 1..N_x \text{ do} \\ \text{for$

 $\frac{\text{Advection (real space)}}{\text{for all } k \in 1..N_z \text{ do}} \\ \frac{\text{for all } j \in 1..N_y, i \in 1..N_x \text{ do}}{Adv[i,j,k] \leftarrow Stencil_{x,y}(T[i,j,k])} \\ \text{end for} \\ \text{end for} \\ \text{for all } for \\ for \\ \text{for all } for \\ \text{for } for \\ for \\ \text{for } for \\ \text{f$

Diffusion (semi-spectral space)

for all $k \in 1..N_z$, $j \in 1..N_y$ do for all $i \in 1..N_x$ do $Diff[i, j, k] \leftarrow Stencil_x(\widehat{T}[i, j, k])$ end for end for

1D DFT dimension y

for all $i \in 1..N_x$, $k \in 1..N_z$ do $hatT[i,:,k] \leftarrow DFT1D_y(T[i,:,k])$ end for 1D DFT dimension z

for all $i \in 1..N_x, j \in 1..N_y$ do $\widehat{T}[i,j,:] \leftarrow DFT1D_z(\widehat{T}[i,j,:])$ end for

 $\frac{\text{Advection (real space)}}{\text{for all } k \in 1..N_z \text{ do}} \\ \frac{\text{for all } j \in 1..N_y, i \in 1..N_x \text{ do}}{Adv[i,j,k] \leftarrow Stencil_{x,y}(T[i,j,k])} \\ \text{end for} \\ \text{end for} \end{cases}$

Diffusion (semi-spectral space)

for all $k \in 1..N_z$, $j \in 1..N_y$ do for all $i \in 1..N_x$ do $Diff[i, j, k] \leftarrow Stencil_x(\widehat{T}[i, j, k])$ end for end for

1D DFT dimension y

for all $i \in 1..N_x$, $k \in 1..N_z$ do $hatT[i,:,k] \leftarrow DFT1D_y(T[i,:,k])$ end for 1D DFT dimension z

```
for all i \in 1..N_x, j \in 1..N_y do

\widehat{T}[i, j, :] \leftarrow DFT1D_z(\widehat{T}[i, j, :])

end for
```

⇒ need to redistribute between DFT

MPI algorithm with 1D \times 1D DFT functions

Time loop

for all time iteration n do $T^* \leftarrow T^n - \Delta t \{\phi, T^n\}$ z distributed $\hat{T^*} \leftarrow DFT_v^{+1}(T^*)$ z distributed Redistribute \hat{T}^* along v $\widehat{T^*} \leftarrow DFT_{-}^{+1}(\widehat{T}^*)$ v distributed $\widehat{T^{n+1}} \leftarrow \widehat{T^*} + \Delta t \nabla \cdot (A_x \nabla \widehat{T^*})$ y distributed $T^{\hat{n}+1} \leftarrow DFT_{z}^{-1}(\widehat{T}^{n+1})$ y distributed Redistribute $T^{\hat{n}+1}$ along z $T^{n+1} \leftarrow DFT_v^{-1}(\hat{T^{n+1}})$ z distributed end for

OpenMP

• Parallelization of the outermost spatial loops

Advection

```
\begin{array}{l} \sharp \mbox{ pragma omp parallel for collapse(2)} \\ \mbox{for all } k \in 1..N_{z,local} \mbox{ do} \\ \mbox{ for all } j \in 1..N_y \mbox{ do} \\ \mbox{ for all } i \in 1..N_x \mbox{ do} \\ \mbox{ Adv}[i,j,k] \leftarrow Stencil_{x,y}(T[i,j,k]) \\ \mbox{ end for} \\ \mbox{ end for} \\ \mbox{ end for} \end{array}
```

! Data locality: to minimize memory bandwidth requirements

! Thread binding: to minimize negative NUMA effects

Outline

The advection-diffusion equation and numerical settings

2 Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP

Architecture and compilation

- Rheticus cluster of Aix-Marseille University
 - \blacktriangleright bi-socket nodes, 2 \times 6 cores Intel Westmere processors
 - 24 GB RAM / node
- Libraries
 - FFTW3 version 3.3
 - \blacktriangleright Open MPI version 1.6.3 + mpiexec with thread binding
- Intel compiler
 - OpenMP
 - auto vectorization

Outline

The advection-diffusion equation and numerical settings

2 Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP

Small test case: times

Small test case: speedups

Small test case: efficiencies

• With times, speedups and efficiencies

why DFT performances does not scale ?

how good are performances compared to hardware's peak performances ?

Roofline model ¹

- More insightful than times, speedups and efficiencies
- Allows to compare code performances to
 - peak floating-point performance
 - peak memory bandwidth
- for a given architecture

¹S. Williams et al, *Roofline: an insightful visual performance model for multicore architectures.* Commun. ACM, vol. 52, no. 4

Matthieu Kuhn, INRIA Bordeaux

Parallelization and roofline for edge plasma

Roofline model: 1 core

Roofline model: 1 core

Roofline model: 1 core

Measures

- For each desired code part
 - Time
- And estimations or hardware counter measures of
 - FLOPS
 - Off-chip memory traffic

Roofline analysis: 1 core

Roofline analysis: 4 cores

Roofline analysis: 8 cores

Roofline analysis: 12 cores

Outline

The advection-diffusion equation and numerical settings

Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP
- 4 Conclusion and perspectives

Multi-node performances: times

12 cores per node

Multi-node performances: speedups

12 cores per node

Multi-node performances: efficiencies

12 cores per node

Outline

The advection-diffusion equation and numerical settings

2 Parallelization strategy and implementation

Performance analysis

- OpenMP only and roofline analysis
- Hybrid MPI/OpenMP

4 Conclusion and perspectives

Conclusion

- Viable hybrid MPI/OpenMP strategy for Emedge3D:
 - high resolution grids reachable (memory resources ++)
 - promising scalings, with 79% efficiency on 384 cores
- Perspectives:
 - perform tests on larger parallel systems
 - consider overlap in domain decomposition
 - couple parallelization strategy with semi-implicit time integration
 - integration of the parallelization strategy in Emedge3D

Thank you for listening!

Parallelization of an Advection-Diffusion Problem Arising in Edge Plasma Physics Using Hybrid MPI/OpenMP Programming, Euro-Par 2015: Parallel Processing, 2015

Comparison of numerical solvers for anisotropic diffusion equations arising in plasma physics, J. Sci. Comput., 2014

matthieu.kuhn@inria.fr