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Context

Fault tolerance at extreme scale is a challenge

I Increase in the number of components
I Millions of computing cores

I Increased failure rate
I Failures can also be due to software

Different kinds of failures

I Crash failures
I Data corruption

I Soft errors

I This talk is about crash failures
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FT for tightly-coupled distributed applications

Message-passing applications

I A set of processes
I Communicate using messages

I MPI
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One process crash prevents the application from progressing
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Checkpointing

I Periodically save the state of the application

I Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Efficiency depends on

I The time to checkpoint

I The time to restart the application from a checkpoint after a
failure

I The time to replay lost computation
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Coordinated checkpointing

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

Standard solution in HPC systems

I Checkpoints form a consistent global state

I When a process fail, all processes restart from the last
checkpoint
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The FT challenge

Status in 2010
I Coordinated checkpoints saved on a PFS

I Extreme scale application footprint

I Failure rate increase
I MTBF of a few hours

More than 50% of
the computing resources could be wasted
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Questions related to checkpointing

I Where to save the checkpoints?

I Multi-level checkpointing [Moody et al, 2011; Bautista et al, 2010]

I What data to save?

I Application-level checkpointing

I How to ensure that the execution is correct?

I Purpose of the checkpointing protocol

Can we do better than coordinated checkpointing?

I Maybe if we take into account the characteristics of MPI HPC
apps
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Towards a scalable checkpointing protocol

Goals

I Partial restart (failure containment)

I Good performance
I Low failure-free execution overhead
I Fast recovery

I Low resource usage
I Computation
I Data storage

Research direction

I Revisit checkpointing theory taking into account the
characteristics of MPI applications
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Contributions

SPBC: A scalable hierarchical protocol

I Perfect failure containment

I No events logged

I Negligible overhead during failure free execution

I Speedup for the rework time

Execution models

I Channel-deterministic algorithms
I Most SPMD MPI applications are channel deterministic.

I The always-happens-before relation
I Partial-order relation on the events of a channel-deterministic

algorithm
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Background



Problem statement

I Asynchronous distributed system
I FIFO channels

I A message-passing application
I Fix set of processes
I MPI application

I Crash-stop failures
I Multiple concurrent failures
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Consistent global state
Causal dependencies between messages

I Message exchanges create dependencies between the state of
the processes

I Events are partially ordered by Lamport’s Happened-Before
relation (→)

I send(m0)→ recv(m0)
I recv(m0)→ recv(m2)

Restart from a consistent global state

Problem of restarting from a random state

p0
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m1 m2

m3 m4

m5

m6

2016 12



Consistent global state
Causal dependencies between messages

Restart from a consistent global state

I A state that could have existed in a failure free execution

I e ′ ∈ C and e → e ′ =⇒ e ∈ C

Problem of restarting from a random state

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

2016 12



Consistent global state
Causal dependencies between messages

Restart from a consistent global state

Problem of restarting from a random state

I Message m6 is orphan
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Hierarchical protocols
Meneses et al, 2010; Bouteiller et al, 2011

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t 
o

f 
D

a
ta

 i
n

 B
y
te

s

Clustering of the processes

I Coordinated checkpointing
inside clusters

I Log inter-cluster messages

Advantages

I Perfect failure containment

I Low number of messages to
log

Problem

I All non-deterministic events need to be logged

I Overhead on failure free performance

2016 13



Hierarchical protocols
Meneses et al, 2010; Bouteiller et al, 2011

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t 
o

f 
D

a
ta

 i
n

 B
y
te

s

Clustering of the processes

I Coordinated checkpointing
inside clusters

I Log inter-cluster messages

Advantages

I Perfect failure containment

I Low number of messages to
log

Problem

I All non-deterministic events need to be logged

I Overhead on failure free performance

2016 13



Hierarchical protocols
Meneses et al, 2010; Bouteiller et al, 2011

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t 
o

f 
D

a
ta

 i
n

 B
y
te

s

Clustering of the processes

I Coordinated checkpointing
inside clusters

I Log inter-cluster messages

Advantages

I Perfect failure containment

I Low number of messages to
log

Problem

I All non-deterministic events need to be logged

I Overhead on failure free performance

2016 13



The SPBC protocol



Channel-deterministic algorithm

MPI channel

I One-way channels

I A channel is defined in the context of a communicator

Definition

p0

p1

p2

m1

m2

m3

An algorithm A is channel-deterministic, if for an initial state Σ,
and for any channel c, the sequence of send events on c is the
same in any valid execution of A.
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Channel-deterministic algorithm

MPI channel

I One-way channels

I A channel is defined in the context of a communicator

Definition

p0

p1

p2

m1

m2

m3

The relative order of the messages received by a process has no
impact on the content and the order of the messages sent by this
process on each channel.
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Validity of the model

Study of the determinism in MPI applications [Cappello et al,
2010]

I 27 applications
I 26 over 27 are channel-deterministic

I One master/worker application is not
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Impact of channel-determinism on event logging

p0

p1

p2

m1

m2

m3

What ”causality” says?

I Events recv(m1) and recv(m2) have to be logged to ensure
that m3 remains valid after a failure

With channel-determinism

I Message m3 does not depend on the relative order of m1 and
m2

I Events recv(m1) and recv(m2) do not need to be logged
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Impact of the MPI interface on event logging

The other role of event logging

I Choosing which logged message to deliver

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

p0

p1

p2

m1 m4

m2

Figure: Replay

Most MPI messages are received using named requests

I m4 cannot be received instead of m2

I What if MPI ANY SOURCE is used?
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The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE
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Always-happens-before relation

Comparing events from different executions

In a channel-deterministic algorithm A, the same messages are
exchanged in all valid executions of A (for a given initial state).

I The relative order of send and recv events can be compared in
different executions of A.

Definition
Event e1 always-happens-before event e2 if there is a
happened-before relation between e1 and e2 in all valid executions
of A

I Notation: e1
A→ e2
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Non-valid execution and always-happens-before

relation

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

Always-happens-before relations:

I recv(m1)
A→ send(m4)

I recv(m2)
A→ send(m4)

p0

p1

p2

m1 m4

m2

Figure: Replay

We have shown that:

I If a reception request r and
a message m can be
mismatched during recovery,

then r
A→ m.
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Transformation of the algorithm

Meaning of AHB

I Mismatches have to be avoided by the programmer in failure
free execution

I She builds in the required synchronization between processes
I She defines communication patterns

Our solution

I During recovery, a logged messages should be replayed in the
pattern it belongs to.

I We propose to add extra ids on messages and reception
requests

I Tuple {pattern id, iteration id}
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The API

p0

p1

p2

Begin it(pat1)

Begin it(pat1)

Begin it(pat1)

{pat1,it1}

{pat1,it1}

{pat1,it1}

{pat1,it1}

End it(pat1)

End it(pat1)

End it(pat1)

{def,def}

{def,def} {def,def}

{def,def}

m1

m2

m3 m4

Code of p0:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Send(dest: p1); /∗m1∗/
...
End iteration(pat1);
MPI Recv(source: p1); /∗m3∗/
MPI Send(dest: p1); /∗m4∗/

Code of p1:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Recv(source: ANY); /∗m1∗/
MPI Recv(source: ANY); /∗m2∗/
...
End iteration(pat1);
MPI Send(dest: p0); /∗m3∗/
MPI Recv(source: p0); /∗m4∗/

I All communication calls that are not inside a programmer-defined
pattern are associated with a default pattern
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Experiments



Implementation

I Integration in MPICH v3.0.2

I Matching messages and requests:
I Modified message header to include pattern id and

iteration id
I Modification of the matching function
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Setup

64-node cluster (grid’5000)

I 2.5 GHz Intel Xeon CPUs (2x4 cores per node)

I 16 GB of memory

I Infiniband 20G

I MPICH-3.0.2 with IPoIB

6 applications

I MiniFe (modified to work with SPBC)

I MiniGhost

I Boomer-AMG (modified/SPBC)

I GTC (modified/SPBC)

I MILC (modified/SPBC)

I CM1

I Modifications are very simple
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Failure-free performance (16 clusters)
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Figure: Performance overhead in %

The overhead is at most 1%

I Overhead of message
logging

I Less with larger clusters
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Performance during recovery
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Always faster during recovery:

I Recovering processes can skip sending inter-cluster messages

I Logged messages can be available in advance
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Conclusion

A new approach

I Design a fault tolerant solution that works efficiently with
many MPI applications

New concepts

I Channel-deterministic algorithms

I The always-happens-before relation

The SPBC checkpointing solution

I A hierarchical checkpointing protocol

I No events logged during failure free execution

I Minor modifications of the applications (if any)

I Efficient in failure free execution and in recovery
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Research directions

Managing logs in hierarchical protocols

I Dedicated logger nodes [Martsinkevich et al, 2015]

Replication of MPI processes

I Replication for channel-deterministic applications [Lefray et al,
2013]

I Highly efficient replication [Ropars et al, 2015]
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