
Leveraging partial determinism in MPI
applications for efficient fault tolerance

Thomas Ropars

thomas.ropars@imag.fr

Université Grenoble Alpes

2016 1

mailto:thomas.ropars@imag.fr


Context

Fault tolerance at extreme scale is a challenge

I Increase in the number of components
I Millions of computing cores

I Increased failure rate
I Failures can also be due to software

Different kinds of failures

I Crash failures
I Data corruption

I Soft errors

I This talk is about crash failures

2016 2



FT for tightly-coupled distributed applications

Message-passing applications

I A set of processes
I Communicate using messages

I MPI

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

?

One process crash prevents the application from progressing

2016 3



FT for tightly-coupled distributed applications

Message-passing applications

I A set of processes
I Communicate using messages

I MPI

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

?

One process crash prevents the application from progressing

2016 3



Checkpointing

I Periodically save the state of the application

I Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Efficiency depends on

I The time to checkpoint

I The time to restart the application from a checkpoint after a
failure

I The time to replay lost computation

2016 4



Checkpointing

I Periodically save the state of the application

I Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Efficiency depends on

I The time to checkpoint

I The time to restart the application from a checkpoint after a
failure

I The time to replay lost computation

2016 4



Checkpointing

I Periodically save the state of the application

I Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Efficiency depends on

I The time to checkpoint

I The time to restart the application from a checkpoint after a
failure

I The time to replay lost computation

2016 4



Checkpointing

I Periodically save the state of the application

I Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Efficiency depends on

I The time to checkpoint

I The time to restart the application from a checkpoint after a
failure

I The time to replay lost computation

2016 4



Checkpointing

I Periodically save the state of the application

I Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Efficiency depends on

I The time to checkpoint

I The time to restart the application from a checkpoint after a
failure

I The time to replay lost computation

2016 4



Coordinated checkpointing

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

Standard solution in HPC systems

I Checkpoints form a consistent global state

I When a process fail, all processes restart from the last
checkpoint

2016 5



Coordinated checkpointing

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

Standard solution in HPC systems

I Checkpoints form a consistent global state

I When a process fail, all processes restart from the last
checkpoint

2016 5



The FT challenge

Status in 2010
I Coordinated checkpoints saved on a PFS

I Extreme scale application footprint

I Failure rate increase
I MTBF of a few hours

More than 50% of
the computing resources could be wasted

2016 6



The FT challenge

Status in 2010
I Coordinated checkpoints saved on a PFS

I Extreme scale application footprint

I Failure rate increase
I MTBF of a few hours

More than 50% of
the computing resources could be wasted

2016 6



Questions related to checkpointing

I Where to save the checkpoints?

I Multi-level checkpointing [Moody et al, 2011; Bautista et al, 2010]

I What data to save?

I Application-level checkpointing

I How to ensure that the execution is correct?

I Purpose of the checkpointing protocol

Can we do better than coordinated checkpointing?

I Maybe if we take into account the characteristics of MPI HPC
apps

2016 7



Questions related to checkpointing

I Where to save the checkpoints?
I Multi-level checkpointing [Moody et al, 2011; Bautista et al, 2010]

I What data to save?
I Application-level checkpointing

I How to ensure that the execution is correct?
I Purpose of the checkpointing protocol

Can we do better than coordinated checkpointing?

I Maybe if we take into account the characteristics of MPI HPC
apps

2016 7



Questions related to checkpointing

I Where to save the checkpoints?
I Multi-level checkpointing [Moody et al, 2011; Bautista et al, 2010]

I What data to save?
I Application-level checkpointing

I How to ensure that the execution is correct?
I Purpose of the checkpointing protocol

Can we do better than coordinated checkpointing?

I Maybe if we take into account the characteristics of MPI HPC
apps

2016 7



Questions related to checkpointing

I Where to save the checkpoints?
I Multi-level checkpointing [Moody et al, 2011; Bautista et al, 2010]

I What data to save?
I Application-level checkpointing

I How to ensure that the execution is correct?
I Purpose of the checkpointing protocol

Can we do better than coordinated checkpointing?

I Maybe if we take into account the characteristics of MPI HPC
apps

2016 7



Towards a scalable checkpointing protocol

Goals

I Partial restart (failure containment)

I Good performance
I Low failure-free execution overhead
I Fast recovery

I Low resource usage
I Computation
I Data storage

Research direction

I Revisit checkpointing theory taking into account the
characteristics of MPI applications

2016 8



Contributions

SPBC: A scalable hierarchical protocol

I Perfect failure containment

I No events logged

I Negligible overhead during failure free execution

I Speedup for the rework time

Execution models

I Channel-deterministic algorithms
I Most SPMD MPI applications are channel deterministic.

I The always-happens-before relation
I Partial-order relation on the events of a channel-deterministic

algorithm

2016 9



Background



Problem statement

I Asynchronous distributed system
I FIFO channels

I A message-passing application
I Fix set of processes
I MPI application

I Crash-stop failures
I Multiple concurrent failures

2016 11



Consistent global state
Causal dependencies between messages

I Message exchanges create dependencies between the state of
the processes

I Events are partially ordered by Lamport’s Happened-Before
relation (→)

I send(m0)→ recv(m0)
I recv(m0)→ recv(m2)

Restart from a consistent global state

Problem of restarting from a random state

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

2016 12



Consistent global state
Causal dependencies between messages

Restart from a consistent global state

I A state that could have existed in a failure free execution

I e ′ ∈ C and e → e ′ =⇒ e ∈ C

Problem of restarting from a random state

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

2016 12



Consistent global state
Causal dependencies between messages

Restart from a consistent global state

Problem of restarting from a random state

I Message m6 is orphan

I What if we cannot replay m4 and m5?

I What if they are not received in the same order?

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

2016 12



Hierarchical protocols
Meneses et al, 2010; Bouteiller et al, 2011

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t 
o

f 
D

a
ta

 i
n

 B
y
te

s

Clustering of the processes

I Coordinated checkpointing
inside clusters

I Log inter-cluster messages

Advantages

I Perfect failure containment

I Low number of messages to
log

Problem

I All non-deterministic events need to be logged

I Overhead on failure free performance

2016 13



Hierarchical protocols
Meneses et al, 2010; Bouteiller et al, 2011

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t 
o

f 
D

a
ta

 i
n

 B
y
te

s

Clustering of the processes

I Coordinated checkpointing
inside clusters

I Log inter-cluster messages

Advantages

I Perfect failure containment

I Low number of messages to
log

Problem

I All non-deterministic events need to be logged

I Overhead on failure free performance

2016 13



Hierarchical protocols
Meneses et al, 2010; Bouteiller et al, 2011

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t 
o

f 
D

a
ta

 i
n

 B
y
te

s

Clustering of the processes

I Coordinated checkpointing
inside clusters

I Log inter-cluster messages

Advantages

I Perfect failure containment

I Low number of messages to
log

Problem

I All non-deterministic events need to be logged

I Overhead on failure free performance

2016 13



The SPBC protocol



Channel-deterministic algorithm

MPI channel

I One-way channels

I A channel is defined in the context of a communicator

Definition

p0

p1

p2

m1

m2

m3

An algorithm A is channel-deterministic, if for an initial state Σ,
and for any channel c, the sequence of send events on c is the
same in any valid execution of A.

2016 15



Channel-deterministic algorithm

MPI channel

I One-way channels

I A channel is defined in the context of a communicator

Definition

p0

p1

p2

m1

m2

m3

The relative order of the messages received by a process has no
impact on the content and the order of the messages sent by this
process on each channel.

2016 15



Validity of the model

Study of the determinism in MPI applications [Cappello et al,
2010]

I 27 applications
I 26 over 27 are channel-deterministic

I One master/worker application is not

2016 16



Impact of channel-determinism on event logging

p0

p1

p2

m1

m2

m3

What ”causality” says?

I Events recv(m1) and recv(m2) have to be logged to ensure
that m3 remains valid after a failure

With channel-determinism

I Message m3 does not depend on the relative order of m1 and
m2

I Events recv(m1) and recv(m2) do not need to be logged

2016 17



Impact of channel-determinism on event logging

p0

p1

p2

m1

m2

m3

What ”causality” says?

I Events recv(m1) and recv(m2) have to be logged to ensure
that m3 remains valid after a failure

With channel-determinism

I Message m3 does not depend on the relative order of m1 and
m2

I Events recv(m1) and recv(m2) do not need to be logged

2016 17



Impact of the MPI interface on event logging

The other role of event logging

I Choosing which logged message to deliver

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

p0

p1

p2

m1 m4

m2

Figure: Replay

Most MPI messages are received using named requests

I m4 cannot be received instead of m2

I What if MPI ANY SOURCE is used?

2016 18



Impact of the MPI interface on event logging

The other role of event logging

I Choosing which logged message to deliver

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

p0

p1

p2

m1 m4

m2

Figure: Replay

Most MPI messages are received using named requests

I m4 cannot be received instead of m2

I What if MPI ANY SOURCE is used?

2016 18



Impact of the MPI interface on event logging

The other role of event logging

I Choosing which logged message to deliver

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

p0

p1

p2

m1 m4

m2

Figure: Replay

Most MPI messages are received using named requests

I m4 cannot be received instead of m2

I What if MPI ANY SOURCE is used?

2016 18



The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE

2016 19



The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE

2016 19



The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE

2016 19



The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE

2016 19



The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE

2016 19



The protocol

Failure-free execution

I Take coordinated
checkpoints inside clusters
periodically

I Log inter-cluster messages
I No event logging

Recovery

I Restart the failed cluster
from the last checkpoint

I Replay missing inter-cluster
messages from the logs

I Same order as before the
failure

P

P

P P

P P

P P

P

P P

P P

Correct for
channel-deterministic
applications not including
MPI ANY SOURCE

2016 19



Always-happens-before relation

Comparing events from different executions

In a channel-deterministic algorithm A, the same messages are
exchanged in all valid executions of A (for a given initial state).

I The relative order of send and recv events can be compared in
different executions of A.

Definition
Event e1 always-happens-before event e2 if there is a
happened-before relation between e1 and e2 in all valid executions
of A

I Notation: e1
A→ e2

2016 20



Non-valid execution and always-happens-before

relation

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

Always-happens-before relations:

I recv(m1)
A→ send(m4)

I recv(m2)
A→ send(m4)

p0

p1

p2

m1 m4

m2

Figure: Replay

We have shown that:

I If a reception request r and
a message m can be
mismatched during recovery,

then r
A→ m.

2016 21



Non-valid execution and always-happens-before

relation

p0

p1

p2

m1

m2

m3 m4

Figure: First execution

Always-happens-before relations:

I recv(m1)
A→ send(m4)

I recv(m2)
A→ send(m4)

p0

p1

p2

m1 m4

m2

Figure: Replay

We have shown that:

I If a reception request r and
a message m can be
mismatched during recovery,

then r
A→ m.

2016 21



Transformation of the algorithm

Meaning of AHB

I Mismatches have to be avoided by the programmer in failure
free execution

I She builds in the required synchronization between processes
I She defines communication patterns

Our solution

I During recovery, a logged messages should be replayed in the
pattern it belongs to.

I We propose to add extra ids on messages and reception
requests

I Tuple {pattern id, iteration id}

2016 22



The API

p0

p1

p2

Begin it(pat1)

Begin it(pat1)

Begin it(pat1)

{pat1,it1}

{pat1,it1}

{pat1,it1}

{pat1,it1}

End it(pat1)

End it(pat1)

End it(pat1)

{def,def}

{def,def} {def,def}

{def,def}

m1

m2

m3 m4

Code of p0:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Send(dest: p1); /∗m1∗/
...
End iteration(pat1);
MPI Recv(source: p1); /∗m3∗/
MPI Send(dest: p1); /∗m4∗/

Code of p1:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Recv(source: ANY); /∗m1∗/
MPI Recv(source: ANY); /∗m2∗/
...
End iteration(pat1);
MPI Send(dest: p0); /∗m3∗/
MPI Recv(source: p0); /∗m4∗/

I All communication calls that are not inside a programmer-defined
pattern are associated with a default pattern

2016 23



The API

p0

p1

p2

Begin it(pat1)

Begin it(pat1)

Begin it(pat1)

{pat1,it1}

{pat1,it1}

{pat1,it1}

{pat1,it1}

End it(pat1)

End it(pat1)

End it(pat1)

{def,def}

{def,def} {def,def}

{def,def}

m1

m2

m3 m4

Code of p0:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Send(dest: p1); /∗m1∗/
...
End iteration(pat1);
MPI Recv(source: p1); /∗m3∗/
MPI Send(dest: p1); /∗m4∗/

Code of p1:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Recv(source: ANY); /∗m1∗/
MPI Recv(source: ANY); /∗m2∗/
...
End iteration(pat1);
MPI Send(dest: p0); /∗m3∗/
MPI Recv(source: p0); /∗m4∗/

I All communication calls that are not inside a programmer-defined
pattern are associated with a default pattern

2016 23



The API

p0

p1

p2

Begin it(pat1)

Begin it(pat1)

Begin it(pat1)

{pat1,it1}

{pat1,it1}

{pat1,it1}

{pat1,it1}

End it(pat1)

End it(pat1)

End it(pat1)

{def,def}

{def,def} {def,def}

{def,def}

m1

m2

m3 m4

Code of p0:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Send(dest: p1); /∗m1∗/
...
End iteration(pat1);
MPI Recv(source: p1); /∗m3∗/
MPI Send(dest: p1); /∗m4∗/

Code of p1:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Recv(source: ANY); /∗m1∗/
MPI Recv(source: ANY); /∗m2∗/
...
End iteration(pat1);
MPI Send(dest: p0); /∗m3∗/
MPI Recv(source: p0); /∗m4∗/

I All communication calls that are not inside a programmer-defined
pattern are associated with a default pattern

2016 23



The API

p0

p1

p2

Begin it(pat1)

Begin it(pat1)

Begin it(pat1)

{pat1,it1}

{pat1,it1}

{pat1,it1}

{pat1,it1}

End it(pat1)

End it(pat1)

End it(pat1)

{def,def}

{def,def} {def,def}

{def,def}

m1

m2

m3 m4

Code of p0:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Send(dest: p1); /∗m1∗/
...
End iteration(pat1);
MPI Recv(source: p1); /∗m3∗/
MPI Send(dest: p1); /∗m4∗/

Code of p1:

pat1=Declare pattern();
...
Begin iteration(pat1);
MPI Recv(source: ANY); /∗m1∗/
MPI Recv(source: ANY); /∗m2∗/
...
End iteration(pat1);
MPI Send(dest: p0); /∗m3∗/
MPI Recv(source: p0); /∗m4∗/

I All communication calls that are not inside a programmer-defined
pattern are associated with a default pattern

2016 23



Experiments



Implementation

I Integration in MPICH v3.0.2

I Matching messages and requests:
I Modified message header to include pattern id and

iteration id
I Modification of the matching function

2016 25



Setup

64-node cluster (grid’5000)

I 2.5 GHz Intel Xeon CPUs (2x4 cores per node)

I 16 GB of memory

I Infiniband 20G

I MPICH-3.0.2 with IPoIB

6 applications

I MiniFe (modified to work with SPBC)

I MiniGhost

I Boomer-AMG (modified/SPBC)

I GTC (modified/SPBC)

I MILC (modified/SPBC)

I CM1

I Modifications are very simple

2016 26



Failure-free performance (16 clusters)

0

1

2

AMG

CM1

GTC

MILC

MiniFE

MiniGhost

●

●

● ●

●

●

Figure: Performance overhead in %

The overhead is at most 1%

I Overhead of message
logging

I Less with larger clusters

2016 27



Performance during recovery

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

AMG CM1 GTC MILC MiniFE MiniGhost

N
o

rm
a
li

z
e
d

 E
x

e
c
u

ti
o

n
 T

im
e

MPICH

2 clusters

4 clusters

8 clusters

16 clusters

Always faster during recovery:

I Recovering processes can skip sending inter-cluster messages

I Logged messages can be available in advance

2016 28



Conclusion

A new approach

I Design a fault tolerant solution that works efficiently with
many MPI applications

New concepts

I Channel-deterministic algorithms

I The always-happens-before relation

The SPBC checkpointing solution

I A hierarchical checkpointing protocol

I No events logged during failure free execution

I Minor modifications of the applications (if any)

I Efficient in failure free execution and in recovery

2016 29



Research directions

Managing logs in hierarchical protocols

I Dedicated logger nodes [Martsinkevich et al, 2015]

Replication of MPI processes

I Replication for channel-deterministic applications [Lefray et al,
2013]

I Highly efficient replication [Ropars et al, 2015]

2016 30



Thanks
My co-workers

I Elisabeth Brunet, Franck Cappello, Amina Guermouche,
Laxmikant Kale, Tatiana Martsinkevitch, Esteban Meneses,
André Schiper, Marc Snir, Bora Ucar.

[1] Thomas Ropars et al. “SPBC: Leveraging the Characteristics of MPI
HPC Applications for Scalable Checkpointing”. SuperComputing. 2013.

[2] Amina Guermouche et al. “HydEE: Failure Containment without Event
Logging for Large Scale Send-Deterministic MPI Applications”. IPDPS.
2012.

[3] Amina Guermouche et al. “Uncoordinated Checkpointing Without
Domino Effect for Send-Deterministic Message Passing Applications”.
IPDPS. 2011.

[4] Thomas Ropars et al. “On the Use of Cluster-Based Partial Message
Logging to Improve Fault Tolerance for MPI HPC Applications”.
Euro-Par. 2011.

2016 31


	Background
	The SPBC protocol
	Experiments

