Beyond scalability limitations: Massively parallel rational approximation of oscillatory problems

Martin Schreiber <M.Schreiber@exeter.ac.uk> with Terry Haut, Pedro Peixoto, Beth Wingate

Computational limitations: HPC trend towards data parallelism

- Increase in frequency stagnated
- Performance increase dominated by increase in data parallelism => multi-core, SIMD
- Bandwidth/Latency bottlenecks
 increasing:

GPUs and the future of parallel computing Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, David Glasco

Further challenges + limitations for real time requirements (between strong and weak scaling)

• **Challenges**: Varying core frequency, system noise, caching sideeffects / false sharing, fault tolerance, memory-bandwidth limitation, threading overheads (starting), synchronization overheads, hardware scaling, communication, etc. are limiting performance for strong scaling problems

• What to do if scalability limitation is reached or we need run the simulations faster?

Img Source: http://portal.uni-freiburg.de/aam/abtlg/wissmit/agkr/muellert/finite-volume-schemes-for-the-shallow-water-equations-on-the-sphere

Martin Schreiber <<u>M.Schreiber@exeter.ac.uk></u>

www.exeter.ac.uk

Parallelization-in-time

Use time as an additional "dimension" of parallelism

Standard time stepping:

Compute time step, advance in time

Parallelization in time: Potential to compute solutions ahead of current time step

Example: Lin. Shallow-water equations

- 2x 14 cores, Intel Xeon(R) CPU E5-2697, no hyperthreading, compact affinities
- Finite-difference method, linear parts of SWE, Runge-Kutta 4, C-grid (staggered)
- Shared-memory parallelization only, no distributed-memory communication overheads
- Scalability limited

A brief and (definitively incomplete!) overview of Parallelization in time

- Parallelization-in-time aims at new degrees of parallelization
- Variety of methods available:
 - "Iterative" in time:
 - Spectral deferred corrections (SDC)
 - Revisionist Integral Deferred Correction (RIDC)
 - Parareal
 - "Direct" in time with exp. Integrators:
 - ParaExp (direct without non-linearities)
 - Rational approximation of an exponential integrator (REXI)
 - Mixture (e.g. use ParaExp/REXI with Parareal)

[Gander] 50 Years of Time Parallel Time Integration, Martin J. Gander [Parareel] Résolution d'EDP par un schéma en temps «pararéel», Jacques-Louis LIONS, Yvon MADAY, Gabriel TURINICI

Parallelization in time for linear part of shallow water equations on f-plane

www.exeter.ac.uk Martin Schreiber </br>

Shallow-water equations are used as test cases to develop

dynamical cores for climate and weather simulations

• Coriolis force for simulation on the sphere $\Lambda = \Omega_{\rm c}$

• Consider only small area with constant Coriolis frequency

• Advective (non-conservative) formulation with $U := (\eta, u, v)^T$

$$U_t = L(U) + N(U)$$
$$L(U) := \begin{pmatrix} -g\partial_x & f \\ -g\partial_y & -f \end{pmatrix} U$$
$$N(U) := \begin{pmatrix} -(\eta u)_x - (\eta v)_y \\ -uu_x - vu_y \\ -uv_x - vv_y \end{pmatrix}$$

Image source:

Atmospheric and oceanic fluid dynamics, Geoffrey K. Vallis, http://weknowyourdreams.com/earth.html

www.exeter.ac.uk Martin Schreiber </br>

Shallow-water equation on f-plane

- Mean height $ar\eta$
- Perturbation η'
- Fluid height

 Linear operator: Use mean height + perturbation

$$L(U) := \begin{pmatrix} 0 & -\bar{\eta}\partial_x & -\bar{\eta}\partial_y \\ -g\partial_x & 0 & f \\ -g\partial_y & -f & 0 \end{pmatrix} U$$

 In this work, we neglect the nonlinear parts (future work)

Pictures! Pictures! Pictures!

Height field on biperiodic plane

Exponential integrators

Exponential integrator?!?

• For linear operator L, the exponential integrator is given by

$$\vec{u}(t + \Delta t) := e^{\Delta t \, L} \, \vec{u}(t) \qquad \quad L(U) := \begin{pmatrix} 0 & -\bar{\eta}\partial_x & -\bar{\eta}\partial_y \\ -g\partial_x & 0 & f \\ -g\partial_y & -f & 0 \end{pmatrix} U$$

- Exponential integrators are a **non-standard time integrators**: Different to RKn, Leapfrog, ...
- No error in time
- Arbitrary long time step size
 => Does not suffer of small time steps for highly oscillatory solution
- Challenging to find efficient solver

Computing exponential integrators

- Efficient computation of exponential integrator?
- Straightforward Eigenvector decomposition too expensive (not feasible for large matrix) and too memory demanding

$$e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\mathbf{T} \mathbf{\Lambda} \mathbf{T}^{-1} \right)^{k} \qquad e^{\mathbf{A}} = \mathbf{T} \begin{bmatrix} e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n}} \end{bmatrix} \mathbf{T}^{-1}$$

- Different solver strategies exist: a Matrix, Twenty-Five Years Later, Cleve Moler, Charles Van Loan
- We use the property that EVs are all imaginary: **exp(i x)** (skew Hermitian matrix L) $L(U) := \begin{pmatrix} 0 & -\bar{\eta}\partial_x & -\bar{\eta}\partial_y \\ -g\partial_x & 0 & f \\ -g\partial_y & -f & 0 \end{pmatrix} U$
- See also: High-order time-parallel approximation of evolution operators Terry Haut, T. Babb, P. G. Martinsson, B. Wingate

п.

Step 1) Approximation of exp(ix)

• Use Gaussian as basis function

$$\psi_h(x) := (4\pi)^{-\frac{1}{2}} e^{-x^2/(4h^2)}$$

• Use superposition to approximate **e**^{ix}

$$e^{ix} \approx \sum_{m=-M}^{M} b_m \psi_h(x+mh)$$

h Sampling accuracy (cf. Nyquist theorem)M Number of samples

On approximate approximations using Gaussian kernels, V. Maz'ya, G. Schmidt

Step 2) Approximation of Gaussian basis function

Use rational approximation or Gaussian basis function

$$\psi_h(x) := (4\pi)^{-\frac{1}{2}} e^{-x^2/(4h^2)}$$
 Tabulated values
$$\psi_h(x) \approx Re\left(\sum_{l=-L}^{L} \frac{a_l}{i\frac{x}{h} + (\mu + i\,l)}\right)$$

Fast and accurate con-eigenvalue algorithm for optimal rational approximations., T. S. Haut & G. Beylkin

www.exeter.ac.uk Martin Schreiber </br>

Approximation of an approximation

• Specialize on exp(ix):

$$e^{ix} \approx \sum_{n=-N}^{N} Re\left(\frac{\beta_n^{Re}}{ix+\alpha_n}\right) + i Re\left(\frac{\beta_n^{Im}}{ix+\alpha_n}\right)$$

High-order time-parallel approximation of evolution operators, Terry Haut, T. Babb, P. G. Martinsson, B. Wingate

www.exeter.ac.uk Martin Schreiber </br>

 $b_m = e^{-imh} e^{h^2}$

Rational approximation of an exponential integrator: (T)REXI

• Approximation of real values of exp(ix):

$$e^{ix} \approx \sum_{n=-N}^{N} Re\left(\frac{\beta_n}{ix + \alpha_n}\right)$$

Terry(er)

• Approximation to linear operator L:

Complex shifted poles

$$U(\tau) = e^{\tau L} U(0) \approx \sum_{n=0}^{N} \gamma_n^{Re} \left(\tau L + \alpha_n\right)^{-1} U(0)$$

!!! System of equations to solve !!!

High-order time-parallel approximation of evolution operators, Terry Haut, T. Babb, P. G. Martinsson, B. Wingate

Solving (L+alpha)⁻¹ $L(U) := \begin{pmatrix} 0 & -\bar{\eta}\partial_x & -\bar{\eta}\partial_y \\ -g\partial_x & 0 & f \\ -g\partial_y & -f & 0 \end{pmatrix} U$ for boundary

Reformulate as Helmholtz equation and solve for height:

$$((\alpha^2 + f^2) - g\bar{\eta}\Delta)\eta = \frac{f^2 + \alpha^2}{\alpha}\eta_0 - \bar{\eta}\delta_0 - \frac{f\bar{\eta}}{\alpha}\zeta_0$$

• Step 2) Directly compute velocity (u,v):

$$U = A_{\alpha}^{-1}(U_0 - g\nabla\eta)$$

$$A_{\alpha}^{-1} = \frac{1}{f^2 + \alpha^2} \begin{pmatrix} \alpha & f \\ -f & \alpha \end{pmatrix}$$

Time for results

Analytical & parallel performance results

SWEET:

Shallow Water Equations Environment for Test, Awesome! (can be used for more than just SWE)

Framework for 2D simulations on regular Cartesian grid

Unified equation programming model:

- Use same notation for spectral and FD methods
- Example: h += dt*(u*h + v*h);
- Support for different grid layouts, e.g. Arakawa A- and C-grids

Space-discretization:

- Spectral methods (Similar to SPH-basis of ECMWF model)
- Finite differences (Similar to FD in ENDGame, MPAS)

Time-stepping methods:

- Euler
- Runge-Kutta 2,3,4
- REXI

Parallelization:

- Space: OpenMP
- Time: MPI/OpenMP

Fast trigonometric-based spectral solvers:

- Allows computing certain solutions directly
- E.g. for Poisson, (specific) Helmholtz problems

SWEET is Open Source: https://github.com/schreiberx/sweet (Code should be part of HPC publication to allow reproducibility of results)

Evaluation of (T)REXI: Accuracy results

• How to choose h and M?

Number of samples **M**

Sampling accuracy **h** (cf. Nyquist theorem)

- What are the dependencies of h and M?
 - N: Resolution NxN
 - L operator (frequencies)
 - Used solver for (L+a)⁻¹ (spectral or finite differences)
 - Time step size dt

Evaluation of (T)REXI for varying h & M

res=64x64, eps=1, dt=0.1, DT=1, Gaussian scenario

Test environment:

- Spectral method
- Spectral solver for REXI term (L+a)⁻¹

REXI term (L+a)⁻¹ Target: Maximize h (accuracy) to minimize M (computational workload)

- Optimum of h close to 0.2
- M for this test case close to 1024

Parameter studies for oscillatory behavior

- Larger epsilon
 => More oscillations
- Increasing number of poles M required for larger epsilon

$$U_t = \epsilon L(U)$$

Resolution 64x64 and for h=0.2

www.exeter.ac.uk Martin Schreiber <M.Schreiber@exeter.ac.uk>

epsilon

Dependency of M to size of large time step

- Larger time step
 => Larger M
- We can observe a linear dependency of M to dT
- Larger time step sizes result in an increase in parallelism!

REXI parameter M

www.exeter.ac.uk Martin Schreiber <M.Schreiber@exeter.ac.uk>

step

size of time

Spectral methods vs. (T)REXI dt=5.0, T=50.0, CFL=0.3, RK4

- Waves initial distribution
- Possibility of higher accuracy compared to solution with spectral method (Errors in time stepping dominate)

Performance, performance! New dimension of parallelization

• New Parallelization degree over the sum!

$$e^{\tau L}U(0) \approx \sum_{n=0}^{N} \gamma_n^{Re} \left(\tau L + \alpha_n\right)^{-1} U(0)$$

- Each term totally independent
- Parallelization
 - in **space** and sequential in time or
 - in time and sequential in space
 - both in time and space

REXI: One parallelization pattern

www.exeter.ac.uk Martin Schreiber <M.Schreiber@exeter.ac.uk>

NIVERSITY OF

Performance: FD vs. (T)REXI

Helmholtz equation is directly solved in spectral space

Computed on Linux Cluster, LRZ / Technical University of Munich

Performance modeling (FD methods)

 $= \underbrace{s_L}_{\text{serial part}} + \underbrace{s_B \log(C) + s_R \log(C)}_{\text{serial/parallel part}} + \underbrace{p_W \left[\frac{W}{\min(C, W)}\right]}_{\text{parallel part}}$

T(C, M)

EXETER

www.exeter.ac.uk Martin Schreiber </br>

Extrapolation with performance model

Summary

- Limitations of scalability in space
- Mathematical reformulation with exponential integrators typically computational expensive
- **(T)REXI** can be used to efficiently solve it massively parallel
- Significant speedups beyond scalability in space
- Additional degree of parallelization can be used for performance boost, by avoiding limited scalability in space
- If spectral solver is not applicable, efficient iterative solver for (L-a)⁻¹ required

Outlook

- Include **non-linear** part of SWE with semi-Lagrangian method
- Several new research areas arising:
 - Price to pay?
 - Additional energy consumption?
 - New heterogeneous network connectivities
 - Vectorization over elements in time
 - Fault tolerance
 - ..
- Long-term vision:
 Develop standard set of numerical PinT kernels for broader experiments

PhD position available – Please contact me

