Numerical simulations in Oceanography for climate studies: How HPC can be used ?

Jean-Marc Molines (LGGE/MEOM)

With contributions of T. Penduff, B. Barnier, J.M. Brankart, J. Le Sommer, S. Leroux (LGGE), L. Bessières (Cerfacs)

Numerical simulations in Oceanography for climate studies: How HPC can be used ?

Jean-Marc Molines (LGGE/MEOM)

With contributions of T. Penduff, B. Barnier, J.M. Brankart, J. Le Sommer, S. Leroux (LGGE), L. Bessières (Cerfacs)

Overview

- Spatio/temporal scales in the ocean (climate focus), computational impacts.
- Numerical model outlook
- Examples of model configurations on HPC

Summary and discussion

Ocean circulation scales

Large scales : Thermohaline circulation

==> 200 to 1000 years time scales

Laboratoire de Glaciologie et Géophysique de l'Environnement

Basin scales : Gyres circulation

Mesoscale : Eddies

Sea Surface Temperature

From 1/12° simulation

==> 2 months to few years

Eddies are sources of the chaotic behaviour of the ocean.

HPC-days Lyon April 2016

Sub-mesoscale : filaments, fronts

Chlorophyl spring bloom seen by Envisat satellite (ESA)

==> days to month time scale : toward energy dissipation scales

Numerical modelling challenges

- Large domain: planet Earth
- Large time scales: 0(1000 yrs)
- Requires high resolution (time/space): eddies in the ocean impacts/link all scales !

==> HPC is needed for these very CPU intensive and TeraBytes producing computations

Mesoscale eddies produce large scale (space and time) intrinsic variability

Numerical tools

Numerical model :

• NEMO:

Nucleus for European Modeling of the Ocean

 model developped by a consortium of 6 European institutions:

 Ocean, Sea-Ice, Bio-Geochemistry components, Tangent and Adjoint Model.

Numerical model :

NEMO also interfaced with third party software

Adaptative Grid Refinement (AGRIF)

LABORATOIRE DES SCIENCES DU CLIMAT ET DE L'ENVIRONNEMENT

• coupling atmospheric models (OASIS)

Numerical model :

NEMO resolves the primitive equations (dynamics and thermodynamics) of the ocean circulation.

- Finite differences
- Coded in Fortran 90/95

NEMO parallelized with explicit message passing technique (MPI)

• Domain decomposition : each sub-domain is associated to a computing core.

XIOS I/O server

From J.L Dufresne et al. 2015, colloque MASTODONS

Model configurations

ORCA12.L46 Simulations

- ORCA12.L46 is a global configuration with a base resolution of 1/12° (ORCA type grid ^{*})
- Mesh size is 4322 x 3059 x 46 (608.10⁶ grid points)
- Typical time step is 360 sec (87600 stp/year)
- One year output is 900 Gb (netcdf4 with compression)
- Target machine is OCCIGEN (CINES)

(3500 to 5000 cores can be used)

Domain decomposition

200 Laboratoire de Glaciologie et Géophysique de l'Environnemen

Domain decomposition

ORCA grid: north fold condition

Laboratoire de Glaciologie et Géophysique de l'Enviror

ORCA12 Scalability on OCCIGEN

blue : no IO Yellow/brown I/O, repeated twice

Model configurations

ORCA025.L75

Context:

- PIs: T. Penduff (LGGE), L.Terray (CERFACS)
- Aim : Unravel Intrinsic Low Frequency Variability of the ocean

Method: Use a 50 members ensemble run performed with ORCA025.L75 configuration on the period 1958-2015

ORCA025.L75 configuration

- ORCA025.L75 is a global configuration with a base resolution of 1/4° (ORCA type grid ^{*})
- Mesh size is 1440 x 1021 x 75 (67.10⁶ grid points)

(x 50 members = $3.8 \ 10^9$ total grid points)

- Typical time step is 1080 sec (29200 stp/year)
- One year output is 2Tb (netcdf4 with compression)
- Target machine for the ensemble run is CURIE
- CPU cost is 19 Mh (16M 2000 + 3M 1000)

NEMO modifications

- Goal : Running the ensemble with only one nemo executable, in order to perform cross-members diagnostics.
- Method: (1) Define an array(dim= n_members) of nemo MPI communicators.

(2) define an array(dim=n_domain) of crossmembers MPI communicators. (Each members use the same domain decomposition)

(3) Adjust file names and I/O to deal with different members.

Domain decomposition

Domain decomposition

Scalability tests

Scalability tests

Scalability vs Number of members With 128 core per members, performance is almost insensitive to the number of members Core/member Step/mn number of members

Ensemble run

ORCA025.L75-OCCITENS

ORCA025.L75-OCCITENS

B

Model configurations

Context: Great Challenges GENCI 2014 during the validation phase of OCCIGEN.

Aim: Perform a numerical simulation of the ocean circulation at km scale.

==> link with SWOT satellite project (2020)

Method : Setup a regional configuration from ORCA12 grid, and a refinement of 5 => 1/60°. A refined vertical resolution of 300 levels is necessary to recover internal wave signals.

NATL60.L300 configuration

- NATL60.L300 is a *regional* configuration with a base resolution of 1/60° (imbedded in ORCA12) covering the North Atlantic between 26°N and 68°N
- Mesh size is 5422 x 3464 x 300 (5.6 10⁹ grid points)
- Typical time step is 60 sec (525500 stp/year)
- One year output is 20 Tb (netcdf4 with compression)
- Target machine for this run is OCCIGEN
- CPU cost is 18 Mh (including fails during the validation phase)

Domain decomposition: 13000 domains

Sub domain size: 41x29x 300 pts

13000 NEMO + 296 XIOS = 13296 cores = 554 nodes / 2106 (26 % of occigen)

- 1/60° resolution \rightarrow 1.2 km at 50 N.
- Bathymetry builded from global files at 1/120° resolution

 \rightarrow manual (!!) tunning for obvious errors

Coast lines *manualy* edited
→ 15d full time !

HPC also requires manual skill, sometimes !

NATL60 Scalabilité on OCCIGEN

NATL60 : Scalability evaluation

Influence de XIOS/placement

NATL60 : Scalability evaluation

Ť.

Influence de XIOS/placement

Sub-mesoscale representation

Chlorophyl spring bloom seen by Envisat satellite (ESA)

MLD = mixed layer depth ==> Model represent *similar* features than observed

Seasonal Cycle : 01/09/08

Seasonal Cycle: 15/03/08

Seasonal Cycle: 15/03/08

Internal Waves

Section 19W south of Iceland Zonal velocity \rightarrow a new view of the ocean

W

Section 36N (Gibraltar). Zonal velocity \rightarrow Med Sea outflow

Laboratoire de Glaciologie et Géochysique de l'Environnement

Ε

Meddies : MEDiteranean EDDIES (1100 m depth)

Relative vorticity

Salinity

Med Sea water is spread out in the North Atlantic by the meddies ...

Summary/ discussion

- We showed 2 ways of using increasing HPC facilities
 - Toward very high resolution
 - Understanding small physical processes
 - Preparing next generation of observing system
 - Preparing next generation of model configuration
 - Toward ensemble runs at lower resolution
 - Assesment of uncertainties due to instrinsic variability
 - Statistical description of ocean state
 - New promising direction (in oceanography)
- NOT the only ways !
 - Coupling with atmospheric model is of fundamental importance

Summary/ discussion

Limitations

- Data storage, post processing, distribution of data is a major concern. Need to join *existing* working groups on this topic
- Scalabilty on machine with O(1M cores)?
 - ==> will require major model evolution
- Numerics adapted to very high resolution ?
 - New parameterization to be developped ?

