Self-improving and exact methods for sparse matrix partitioning

Mathematical Institute, Utrecht University
Results

Joint work with Jan-Willem Buurlage (UU), Daniël M. Pelt (CWI
Amsterdam), Timon Knigge (UU)
HPC Days in Lyon, April 8, 2016

Introduction

Self-improving partitioning
Hypergraph label propagation
Balancing iterative solver and partitioner Results

Exact partitioning
Branch-and-bound
Lower bounds
Results
Pretty pictures

Conclusion and future work

Motivation: solving systems of linear equations

- Given a matrix $A \in \mathbb{R}^{m \times n}$ solve $A \vec{x}=\vec{b}$ for $\vec{b} \in \mathbb{R}^{m}$.
- Iterative solvers approximate $\vec{x} \in \mathbb{R}^{n}$ efficiently, by looking only at appropriate subspaces.

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

Krylov subspace methods

- Let $r_{0}=b-A \vec{x}_{0}$, where \vec{x}_{0} is an initial guess.
- Iteratively construct the family of Krylov subspaces

$$
\mathcal{K}_{k}=\operatorname{span}\left\{\vec{r}_{0}, A \vec{r}_{0}, A^{2} \vec{r}_{0}, \ldots, A^{k-1} \vec{r}_{0}\right\}
$$

- From the space \mathcal{K}_{k}, take \vec{x}_{k} as the k th guess minimising the residual:

$$
\vec{x}_{k}=\operatorname{argmin}_{z \in \mathcal{K}_{k}}\|\vec{b}-A \vec{z}\| .
$$

- Terminate when $\left\|\vec{b}-A \vec{x}_{k}\right\|<\rho$, where ρ is some tolerance level.

Parallel sparse matrix-vector multiplication

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

- Parallel multiplication of a 5×5 sparse matrix A and a dense input vector \vec{v},

$$
\vec{u}=A \vec{v}
$$

- 2D matrix distribution over 2 processors
- $V=4$ data words of communication
- Perfect load balance: 8 nonzeros per processor

Sparse matrix partitioning

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

Chicken-and-egg problem

- Getting a good partitioning can be very expensive. Thus, you need to find it in parallel. Therefore, you need a good partitioning.
- We propose the scheme:

1. Begin with an initial partitioning of reasonable quality.
2. While running the iterative solver, try to guess the number of iterations still required (based on the convergence behaviour).
3. If this number is large, spend some time refining the partitioning.

- For our scheme, we require an iterative partitioner. The one we develop is based on label propagation for graphs.

Label propagation on graphs

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results

1. Assign to each $v \in V$ a random label $L(v) \in\{0, \ldots, p-1\}$.
2. Consider each vertex v in turn, and update to the majority label amongst its neighbours. Ties are broken randomly.

Label propagation example, $p=2$

Outline
 Introduction
 Self-improving
 HyperPULP
 Balancing
 Results
 Exact
 B\&B
 Bounds
 Results
 Pretty pictures
 Conclusion and
 future work

Label propagation example, $p=2$

Outline
 Introduction
 Self-improving
 HyperPULP
 Balancing
 Results
 Exact
 B\&B
 Bounds
 Results
 Pretty pictures
 Conclusion and
 future work

Label propagation example, $p=2$

Outline
 Introduction
 Self-improving
 HyperPULP
 Balancing
 Results
 Exact
 B\&B
 Bounds
 Results
 Pretty pictures
 Conclusion and
 future work

Label propagation example, $p=2$

Outline
 Introduction
 Self-improving
 HyperPULP
 Balancing
 Results
 Exact
 B\&B
 Bounds
 Results
 Pretty pictures
 Conclusion and
 future work

Label propagation example, $p=2$

Outline
 Introduction
 Self-improving
 HyperPULP
 Balancing
 Results
 Exact
 B\&B
 Bounds
 Results
 Pretty pictures
 Conclusion and
 future work

Hypergraph model

- We want to find a p-way partitioning of the matrix A while minimising the communication volume V.
- A hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N})$ is a collection of vertices \mathcal{V}, along with a set of nets (or hyperedges) \mathcal{N} such that every $n \in \mathcal{N}$ is a subset of \mathcal{V}.
- Consider a hypergraph \mathcal{H} associated to the sparsity pattern of the matrix A, where each vertex represents a matrix

Introduction
Self-improving
HyperPULP
Balancing
Results column, and each net represents the nonzeros in a matrix row (row-net model).

Label propagation on graphs

- To update the label (part in the partitioning) of a vertex v, we count the labels of its neighbours:

Outline
Introduction
Self-improving
HyperPULP
Balancing Results of a part:

$$
C_{s}(v)=\sum_{(v, u) \in E} \delta(L(u), s) \cdot \operatorname{deg}(u)
$$

Label propagation on hypergraphs

- The sum will now be over nets instead of edges. Let \mathcal{N}_{v} be the collection of nets containing v. Then

$$
C_{s}(v)=\sum_{n \in \mathcal{N}_{v}} w(n, s)
$$

- The weight function w should encode two key ideas:
- We do not want to introduce any new labels to a net, and we should try to eliminate labels with few vertices in the

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work net.

- When a net is almost pure (single-label) a differently labeled vertex in this net should strongly prefer taking over the majority label.

Quality function

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results

- We will let the weight function depend only on the relative size of part s in net n,

$$
x(n, s)=\frac{2|\{v \in n: L(v)=s\}|}{|n|}-1
$$

- A function that represents the key ideas is

$$
w=\log \left(\frac{1+x}{1-x}\right), \text { for } x \in(-1,1)
$$

Initial partitioning

- The PuLP algorithm initially constructs parts around vertices with high degree, because this is expected to lead to good partitionings.
- For hypergraphs, we observe that relatively small nets are most easily kept pure. We could therefore ignore larger nets at first.
- We construct a chain of growing hypergraphs:

$$
\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset \mathcal{H}_{2} \subset \ldots \subset H_{M}=\mathcal{H}
$$

Here, $\mathcal{H}_{i}=\left(\mathcal{V}, \mathcal{N}^{i}\right)$, and \mathcal{N}^{i} holds the smallest 2^{i} nets.

Partitioner iteration

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results

- For $i>M$, we have $\mathcal{H}_{i}=\mathcal{H}$, and we perform this label propagation on the entire hypergraph \mathcal{H}.

Balancing criterion

- Let $N_{\text {it }}$ be the projected number of iterations left, fitted to the norm of the residual as a function of solver iterations.
- Let ΔV be the projected volume decrease, taken as the decrease of the communication volume in the previous partitioner iteration.
- Perform a partitioner iteration if

$$
T_{\text {part }}+N_{\mathrm{it}} T_{\text {sol }}(V-\Delta V)<N_{\mathrm{it}} T_{\mathrm{sol}}(V)
$$

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
where $T_{\text {part }}$ is the time of a partitioner iteration and $T_{\text {sol }}(V)$ the time of a solver iteration.

HyperPULP in action for 80×80 matrix steam3

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

$$
V=80
$$

HyperPULP in action for 80×80 matrix steam3

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

$$
V=68
$$

HyperPULP in action for 80×80 matrix steam3

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

$$
V=52
$$

HyperPULP in action for 80×80 matrix steam 3

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

$$
V=8
$$

Partitioning volume and time vs. SpMV time

Matrix	m	n	$n z$	V_{HP}	V_{C}	T_{HP} (in ms)	T_{C} (in ms)	$T_{\text {part }}$ (in ms)
cage7	340	340	3084	223	339	3.72	4.30	5.84
cage8	1015	1015	11003	519	1009	5.15	6.30	30.44
cage9	3534	3534	41594	1806	3512	11.07	14.93	113.96
cage10	11397	11397	150645	5420	11356	30.30	43.41	647.76
cage11	39082	39082	559722	20988	38957	102.82	133.43	2656.46
bcspwr06	1454	1454	5300	597	1242	4.98	6.81	12.89
cdde1	961	961	4681	935	961	5.75	5.92	8.31
bp_800	822	822	4534	467	582	4.84	5.10	10.43
well1033	1033	320	4732	206	274	3.96	4.05	8.44
ex24	2283	2283	48737	979	2283	9.56	12.33	112.93

- $p=2$ using BSPonMPI on Bull supercomputer
- $V_{\mathrm{HP}}, V_{C}=$ communication volume of HyperPULP, 1D cyclic partitioning
- $T_{\mathrm{HP}}, T_{\mathrm{C}}=$ time of 100 sparse matrix-vector multiplications
- $T_{\text {part }}=$ partitioning time until local optimum

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

Software: mixing partitioners and linear solvers

- Mixing partitioning and solver iterations requires significant changes to existing software workflows.
- The new framework that was developed, Zee, is an attempt to provide a unified library that uses familiar syntax for common operations.

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

- Completely open-source and free to use, written by Jan-Willem Buurlage.

Optimal bipartitioning

7×7 matrix b1_ss, $n z(A)=15$

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results

- Problem $p=2$ is easier to solve than $p>2$.
- Load balance criterion is

$$
n z\left(A_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{n z(A)}{2}\right\rceil, \quad \text { for } i=0,1
$$

- Rounding enables a feasible solution even for $\varepsilon=0$ and odd $n z(A)$.

Branch-and-bound method

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

- Construct a ternary tree representing all possible solutions
- Every node in the tree has 3 branches, representing a choice for a matrix row or column:
- completely assigned to processor $P(0)$
- completely assigned to processor $P(1)$
- cut
- The tree is pruned by using lower bounds on the communication volume or number of nonzeros

Lower bounds L_{1}, L_{2} on communication volume

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and

- Partial solution: value 0,1 , or c has been assigned to 2 rows and 2 columns
- Row 0 has been cut: lower bound on volume $L_{1}=1$
- Rows 2 and 4 have been implicitly cut: $L_{2}=2$

Lower bound L_{3} on communication volume

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and future work

- Columns 2, 3, 4 have been partially assigned to $P(0)$
- They can only be completely assigned to $P(0)$ or cut.
- For perfect load balance $(\varepsilon=0)$, we can assign at most 2 more red nonzeros
- Thus we have to cut column 3, and one more: $L_{3}=2$

Optimal solution

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

- Optimal solution: volume $=4$.
- Total lower bound is $L B=L_{1}+L_{2}+L_{3}=5$.
- Prune partial solution since $L B>U B$.

Lower bound L_{4} by conflicting partial assignments

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures

- Permute matrix to create blocks:
- \hat{B}_{0} : completely assigned to processor $P(0)$
- P_{0} : partially assigned to processor $P(0)$
- \hat{B}_{c} : cut
- \hat{I}_{c} : implicitly cut
- Conflict for nonzero in row block $P_{1} \cap$ column block P_{0} : $L_{4}=1$

Maximum bipartite graph matching

- Assume row block $P_{0} \cap$ column block P_{1} contains several nonzeros.
- Define bipartite graph $G=\left(V_{0} \cup V_{1}, E\right)$:
- vertex set V_{0} contains the rows of P_{0},
- vertex set V_{1} contains the columns of P_{1},
- edge set E containing edges (i, j) for $a_{i j} \neq 0$.
- Compute a maximum matching $M \subseteq E$. Then $L_{4}=|M|$, since every nonzero (edge) in the matching causes at least

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work one cut row or column.

- Two nonzeros from the matching cannot be in the same matrix row or column.

Alternative view: minimum vertex cover

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and

Dynamic maximum matching

- The conflict graph is small, because we solve small sparse matrix problems and solutions with many conflicts get pruned early.
- Therefore, we maintain a maximum graph matching as the conflict graph changes.
- We prove, as a direct consequence of Berge's theorem (1957):
- when adding a vertex i with all its edges: sufficient to search for an augmenting path starting at i;
- when deleting a matched vertex i with all its edges: sufficient to search for an augmenting path starting at the match of i.

Results for 10 largest matrices solved

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work
$\mathrm{MG}=$ medium-grain method (v4.0)
FG $=$ fine-grain model (Catalyürek and Aykanat 2001)
Opt $=$ optimal using MondriaanOpt (Mondriaan v4.1, soon)

Matrix	m	n	$n z$	$V_{L B}$	$V_{M G}$	$V_{F G}$	$V_{O p t}$	Time (s)
stoch_air	3754	7517	20267	14	14	13	6	0.39
rosen1	520	1544	23794	8	8	24	8	0.03
add32	4960	4960	23884	40	13	13	4	381.29
mhd 4800 b	4800	4800	27520	3	2	2	2	161.83
Chebyshev3	4101	4101	36879	4	22	15	4	0.07
rosen2	1032	3080	47536	8	8	33	8	0.05
lp_fit2p	3000	13525	50284	25	25	70	21	0.79
rosen10	2056	6152	64192	8	8	26	8	0.10
c-30	5321	5321	65693	1583	43	790	30	6.07
lp_fit2d	25	10524	129042	25	25	27	21	0.76
$L B=$ localbest $=$ best of 1 D row, 1 D column (v1-v3)								
$\mathrm{MG}=$ medium-grain method (v4.0)								
FG $=$ fine-grain model (Çatalyürek and Aykanat 2001)								
Opt $=$ optimal using MondriaanOpt (Mondriaan v4.1, soon)								

Benchmarking 3 methods vs. optimal partitioning

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and

- 217 matrices from U. Florida collection with $n z \leq 1000$
- 85% were solved to optimality for $\varepsilon=0.03$
- $V_{O p t}=0$ excluded from test suite
- Medium-grain method solves 87% of test suite within factor 2 of optimal volume.

Matrix steam3

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and

- 80×80 matrix steam3, $n z(A)=928$
- 1D steam model of oil reservoir (Roger Grimes 1983)
- 20 points, 4 degrees of freedom
- $V=8$, perfect balance

Matrix divorce

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

- 50×9 matrix divorce, $n z(A)=225$
- Divorce laws in the 50 US states
- Row 0 is Alabama, ..., Row 49 is Wyoming
- Column 0 is Incompatibility, Column 1 is Cruelty, ..
- $V=8$, imbalance $=n z_{\text {max }}-n z_{\text {min }}=1$

Matrix cage5

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and
future work

- 37×37 matrix cage5, $n z(A)=233$
- Markov model of DNA electrophoresis, 5 monomers in polymer (Alexander van Heukelum 2003)
- $n z_{0}=106 ; n z_{1}=110 ; n z_{\text {free }}=17$
- $V=14$, imbalance $=n z_{\text {max }}-n z_{\text {min }}=1$

Conclusion

- We have introduced a relatively cheap hypergraph partitioning method that is capable of improving itself over time.
- We minimise the total running time of partitioners and linear solvers by mixing the two operations.
- We also presented an exact branch-and-bound algorithm for computing optimal bipartitionings of small sparse matrices.
- Currently, optimal partitionings have been determined for over 260 matrices.
- Lessons learned from optimal partitioning: the heuristic medium-grain method, the use of volume 0 luck, and the benefit of free nonzeros.

Outline
Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and

Future work

- Parallelise every component of the self-improving method (linear algebra operations / partitioner / solver /, Jan-Willem Burlage).
- Expand the MondriaanOpt database: one matrix a day, at http://www.staff.science.uu.nl/~bisse101/ Mondriaan/Opt
- Further improve the lower bounds (Timon Knigge)
- Spring 2016: release Mondriaan v4.1 software package, including MondriaanOpt v1.0. β version available upon request.
"An exact algorithm for sparse matrix bipartitioning", by Daniël M.
Pelt and Rob H. Bisseling, Journal of Parallel and Distributed

Thank you!

Outline

Introduction
Self-improving
HyperPULP
Balancing
Results
Exact
B\&B
Bounds
Results
Pretty pictures
Conclusion and future work

