Self-improving and exact methods for sparse matrix partitioning

Rob H. Bisseling

Mathematical Institute, Utrecht University

Joint work with Jan-Willem Buurlage (UU), Daniël M. Pelt (CWI Amsterdam), Timon Knigge (UU)

HPC Days in Lyon, April 8, 2016
Introduction

Self-improving partitioning
 Hypergraph label propagation
 Balancing iterative solver and partitioner
 Results

Exact partitioning
 Branch-and-bound
 Lower bounds
 Results
 Pretty pictures

Conclusion and future work
Motivation: solving systems of linear equations

- Given a matrix $A \in \mathbb{R}^{m \times n}$ solve $A\vec{x} = \vec{b}$ for $\vec{b} \in \mathbb{R}^{m}$.
- Iterative solvers approximate $\vec{x} \in \mathbb{R}^{n}$ efficiently, by looking only at appropriate subspaces.
Krylov subspace methods

- Let $r_0 = b - A\vec{x}_0$, where \vec{x}_0 is an initial guess.
- Iteratively construct the family of Krylov subspaces
 $$\mathcal{K}_k = \text{span}\{\vec{r}_0, A\vec{r}_0, A^2\vec{r}_0, \ldots, A^{k-1}\vec{r}_0\}.$$
- From the space \mathcal{K}_k, take \vec{x}_k as the kth guess minimizing the residual:
 $$\vec{x}_k = \arg\min_{\vec{z} \in \mathcal{K}_k} \| \vec{b} - A\vec{z} \|.$$
- Terminate when $\| \vec{b} - A\vec{x}_k \| < \rho$, where ρ is some tolerance level.
Parallel sparse matrix-vector multiplication

- Parallel multiplication of a 5×5 sparse matrix A and a dense input vector \vec{v},

$$\vec{u} = A\vec{v}$$

- 2D matrix distribution over 2 processors
- $V = 4$ data words of communication
- Perfect load balance: 8 nonzeros per processor
Sparse matrix partitioning

34 × 34 matrix karate,

\[\text{nz}(A) = 156 \text{ (Zachary's karate club, 1977), } V = 8 \]
Getting a good partitioning can be very expensive. Thus, you need to find it in parallel. Therefore, you need a good partitioning.

We propose the scheme:

1. Begin with an initial partitioning of reasonable quality.
2. While running the iterative solver, try to guess the number of iterations still required (based on the convergence behaviour).
3. If this number is large, spend some time refining the partitioning.

For our scheme, we require an iterative partitioner. The one we develop is based on label propagation for graphs.
Label propagation on graphs

- Goal: Given a graph $G = (V, E)$, obtain a p-way partitioning that minimises the edge-cut (i.e., the number of edges between different parts).

- Here, we describe a simplified version of the PuLP algorithm (Partitioning using Label Propagation) [Slota, Madduri, and Rajamanickam 2014]:
 1. Assign to each $v \in V$ a random label $L(v) \in \{0, \ldots, p-1\}$.
 2. Consider each vertex v in turn, and update to the majority label amongst its neighbours. Ties are broken randomly.
Label propagation example, $p = 2$
We want to find a p-way partitioning of the matrix A while minimizing the communication volume V.

A hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N})$ is a collection of vertices \mathcal{V}, along with a set of nets (or hyperedges) \mathcal{N} such that every $n \in \mathcal{N}$ is a subset of \mathcal{V}.

Consider a hypergraph \mathcal{H} associated to the sparsity pattern of the matrix A, where each vertex represents a matrix column, and each net represents the nonzeros in a matrix row (row-net model).
Label propagation on graphs

- To update the label (part in the partitioning) of a vertex \(v \), we count the labels of its neighbours:

\[
C_s(v) = \sum_{(v,u) \in E} \delta(L(u), s), \text{ for } s = 0, \ldots, p - 1.
\]

Here, \(\delta(i,j) = 1 \) if \(i = j \) and \(\delta(i,j) = 0 \) otherwise.

- We can give more weight to neighbours with high degree, hoping that vertices of low degree end up at the boundary of a part:

\[
C_s(v) = \sum_{(v,u) \in E} \delta(L(u), s) \cdot \deg(u).
\]
Label propagation on hypergraphs

- The sum will now be over nets instead of edges. Let \(\mathcal{N}_v \) be the collection of nets containing \(v \). Then

\[
C_s(v) = \sum_{n \in \mathcal{N}_v} w(n, s).
\]

- The weight function \(w \) should encode two key ideas:
 - We do not want to introduce any new labels to a net, and we should try to eliminate labels with few vertices in the net.
 - When a net is almost pure (single-label) a differently labeled vertex in this net should strongly prefer taking over the majority label.
We will let the weight function depend only on the relative size of part s in net n,

$$x(n, s) = \frac{2|\{v \in n : L(v) = s\}|}{|n|} - 1.$$

A function that represents the key ideas is

$$w = \log \left(\frac{1 + x}{1 - x}\right), \text{ for } x \in (-1, 1).$$
Initial partitioning

- The PuLP algorithm initially constructs parts around vertices with high degree, because this is expected to lead to good partitionings.
- For hypergraphs, we observe that relatively small nets are most easily kept pure. We could therefore ignore larger nets at first.
- We construct a chain of growing hypergraphs:
 \[\mathcal{H}_0 \subset \mathcal{H}_1 \subset \mathcal{H}_2 \subset \ldots \subset \mathcal{H}_M = \mathcal{H}. \]

Here, \(\mathcal{H}_i = (\mathcal{V}, \mathcal{N}^i) \), and \(\mathcal{N}^i \) holds the smallest \(2^i \) nets.
Partitioner iteration

- Begin with some initial partitioning, e.g. distribute the vertices cyclically, choosing the label \(s = v \mod p \) for vertex \(v \in \mathcal{V} \).
- For iteration \(i \) with \(0 \leq i \leq M \), consider each vertex \(v \in \mathcal{V} \) in turn. Choose the label \(s \) that maximises \(C_s(v) \) in the hypergraph \(\mathcal{H}_i \).
- For \(i > M \), we have \(\mathcal{H}_i = \mathcal{H} \), and we perform this label propagation on the entire hypergraph \(\mathcal{H} \).
Balancing criterion

- Let N_{it} be the projected number of iterations left, fitted to the norm of the residual as a function of solver iterations.
- Let ΔV be the projected volume decrease, taken as the decrease of the communication volume in the previous partitioner iteration.
- Perform a partitioner iteration if

$$T_{part} + N_{it} T_{sol}(V - \Delta V) < N_{it} T_{sol}(V),$$

where T_{part} is the time of a partitioner iteration and $T_{sol}(V)$ the time of a solver iteration.
HyperPULP in action for 80×80 matrix $\text{steam}3$
HyperPULP in action for 80×80 matrix steam3

$V = 68$
HyperPULP in action for 80×80 matrix steam3

$V = 52$
HyperPULP in action for 80×80 matrix steam3

$V = 8$
Partitioning volume and time vs. SpMV time

<table>
<thead>
<tr>
<th>Matrix</th>
<th>m</th>
<th>n</th>
<th>nz</th>
<th>V_{HP}</th>
<th>V_C</th>
<th>T_{HP} (in ms)</th>
<th>T_C (in ms)</th>
<th>T_{part} (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cage7</td>
<td>340</td>
<td>340</td>
<td>3084</td>
<td>223</td>
<td>339</td>
<td>3.72</td>
<td>4.30</td>
<td>5.84</td>
</tr>
<tr>
<td>cage8</td>
<td>1015</td>
<td>1015</td>
<td>11003</td>
<td>519</td>
<td>1009</td>
<td>5.15</td>
<td>6.30</td>
<td>30.44</td>
</tr>
<tr>
<td>cage9</td>
<td>3534</td>
<td>3534</td>
<td>41594</td>
<td>1806</td>
<td>3512</td>
<td>11.07</td>
<td>14.93</td>
<td>113.96</td>
</tr>
<tr>
<td>cage10</td>
<td>11397</td>
<td>11397</td>
<td>150645</td>
<td>5420</td>
<td>11356</td>
<td>30.30</td>
<td>43.41</td>
<td>647.76</td>
</tr>
<tr>
<td>cage11</td>
<td>39082</td>
<td>39082</td>
<td>559722</td>
<td>20988</td>
<td>38957</td>
<td>102.82</td>
<td>133.43</td>
<td>2656.46</td>
</tr>
<tr>
<td>bcsprw06</td>
<td>1454</td>
<td>1454</td>
<td>5300</td>
<td>597</td>
<td>1242</td>
<td>4.98</td>
<td>6.81</td>
<td>12.89</td>
</tr>
<tr>
<td>cdde1</td>
<td>961</td>
<td>961</td>
<td>4681</td>
<td>935</td>
<td>961</td>
<td>5.75</td>
<td>5.92</td>
<td>8.31</td>
</tr>
<tr>
<td>bp.800</td>
<td>822</td>
<td>822</td>
<td>4534</td>
<td>467</td>
<td>582</td>
<td>4.84</td>
<td>5.10</td>
<td>10.43</td>
</tr>
<tr>
<td>well1033</td>
<td>1033</td>
<td>320</td>
<td>4732</td>
<td>206</td>
<td>274</td>
<td>3.96</td>
<td>4.05</td>
<td>8.44</td>
</tr>
<tr>
<td>ex24</td>
<td>2283</td>
<td>2283</td>
<td>48737</td>
<td>979</td>
<td>2283</td>
<td>9.56</td>
<td>12.33</td>
<td>112.93</td>
</tr>
</tbody>
</table>

- $p = 2$ using BSPonMPI on Bull supercomputer
- $V_{\text{HP}}, V_C =$ communication volume of HyperPULP, 1D cyclic partitioning
- $T_{\text{HP}}, T_C =$ time of 100 sparse matrix–vector multiplications
- $T_{\text{part}} =$ partitioning time until local optimum
Mixing partitioning and solver iterations requires significant changes to existing software workflows.

The new framework that was developed, Zee, is an attempt to provide a unified library that uses familiar syntax for common operations.

Completely open-source and free to use, written by Jan-Willem Buurlage.
Optimal bipartitioning

Benchmark $p = 2$ because heuristic partitioners are often based on recursive bipartitioning.

Problem $p = 2$ is easier to solve than $p > 2$.

Load balance criterion is

$$\text{nz}(A_i) \leq (1 + \varepsilon) \left\lceil \frac{\text{nz}(A)}{2} \right\rceil, \quad \text{for } i = 0, 1.$$

Rounding enables a feasible solution even for $\varepsilon = 0$ and odd $\text{nz}(A)$.

7 × 7 matrix $b1_{\text{ss}}$, $\text{nz}(A) = 15$
Construct a ternary tree representing all possible solutions. Every node in the tree has 3 branches, representing a choice for a matrix row or column:

- completely assigned to processor $P(0)$
- completely assigned to processor $P(1)$
- cut

The tree is pruned by using lower bounds on the communication volume or number of nonzeros.
Lower bounds L_1, L_2 on communication volume

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Partial solution: value 0, 1, or c has been assigned to 2 rows and 2 columns
- Row 0 has been **cut**: lower bound on volume $L_1 = 1$
- Rows 2 and 4 have been **implicitly cut**: $L_2 = 2$
Lower bound L_3 on communication volume

- Columns 2, 3, 4 have been \textit{partially assigned} to $P(0)$
- They can only be completely assigned to $P(0)$ or cut.
- For perfect load balance ($\varepsilon = 0$), we can assign at most 2 more red nonzeros
- Thus we have to cut column 3, and one more: $L_3 = 2$
Optimal solution

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>C</th>
<th>1</th>
<th>C</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Total lower bound is $LB = L_1 + L_2 + L_3 = 5$.
- Prune partial solution since $LB > UB$.
Lower bound L_4 by conflicting partial assignments

- Permute matrix to create blocks:
 - \hat{B}_0: completely assigned to processor $P(0)$
 - P_0: partially assigned to processor $P(0)$
 - \hat{B}_c: cut
 - \hat{I}_c: implicitly cut

- Conflict for nonzero in row block $P_1 \cap$ column block P_0:
 - $L_4 = 1$
Maximum bipartite graph matching

- Assume row block \(P_0 \) and column block \(P_1 \) contains several nonzeros.
- Define bipartite graph \(G = (V_0 \cup V_1, E) \):
 - vertex set \(V_0 \) contains the rows of \(P_0 \),
 - vertex set \(V_1 \) contains the columns of \(P_1 \),
 - edge set \(E \) containing edges \((i, j)\) for \(a_{ij} \neq 0\).
- Compute a maximum matching \(M \subseteq E \). Then \(L_4 = |M| \), since every nonzero (edge) in the matching causes at least one cut row or column.
- Two nonzeros from the matching cannot be in the same matrix row or column.
Alternative view: minimum vertex cover

- König’s theorem (1931): maximum matching in bipartite graph is equivalent to minimum vertex cover (minimum number of vertices needed to cover at least one end point for all edges).
- This gives the minimum number of cut rows or columns.
Dynamic maximum matching

- The conflict graph is small, because we solve small sparse matrix problems and solutions with many conflicts get pruned early.
- Therefore, we maintain a maximum graph matching as the conflict graph changes.
- We prove, as a direct consequence of Berge’s theorem (1957):
 - when adding a vertex i with all its edges: sufficient to search for an augmenting path starting at i;
 - when deleting a matched vertex i with all its edges: sufficient to search for an augmenting path starting at the match of i.
Results for 10 largest matrices solved

<table>
<thead>
<tr>
<th>Matrix</th>
<th>m</th>
<th>n</th>
<th>nz</th>
<th>V_{LB}</th>
<th>V_{MG}</th>
<th>V_{FG}</th>
<th>V_{Opt}</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>stoch_air</td>
<td>3754</td>
<td>7517</td>
<td>20267</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>6</td>
<td>0.39</td>
</tr>
<tr>
<td>rosen1</td>
<td>520</td>
<td>1544</td>
<td>23794</td>
<td>8</td>
<td>8</td>
<td>24</td>
<td>8</td>
<td>0.03</td>
</tr>
<tr>
<td>add32</td>
<td>4960</td>
<td>4960</td>
<td>23884</td>
<td>40</td>
<td>13</td>
<td>13</td>
<td>4</td>
<td>381.29</td>
</tr>
<tr>
<td>mhd4800b</td>
<td>4800</td>
<td>4800</td>
<td>27520</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>161.83</td>
</tr>
<tr>
<td>Chebyshev3</td>
<td>4101</td>
<td>4101</td>
<td>36879</td>
<td>4</td>
<td>22</td>
<td>15</td>
<td>4</td>
<td>0.07</td>
</tr>
<tr>
<td>rosen2</td>
<td>1032</td>
<td>3080</td>
<td>47536</td>
<td>8</td>
<td>8</td>
<td>33</td>
<td>8</td>
<td>0.05</td>
</tr>
<tr>
<td>lp_fit2p</td>
<td>3000</td>
<td>13525</td>
<td>50284</td>
<td>25</td>
<td>25</td>
<td>70</td>
<td>21</td>
<td>0.79</td>
</tr>
<tr>
<td>rosen10</td>
<td>2056</td>
<td>6152</td>
<td>64192</td>
<td>8</td>
<td>8</td>
<td>26</td>
<td>8</td>
<td>0.10</td>
</tr>
<tr>
<td>c-30</td>
<td>5321</td>
<td>5321</td>
<td>65693</td>
<td>1583</td>
<td>43</td>
<td>790</td>
<td>30</td>
<td>6.07</td>
</tr>
<tr>
<td>lp_fit2d</td>
<td>25</td>
<td>10524</td>
<td>129042</td>
<td>25</td>
<td>25</td>
<td>27</td>
<td>21</td>
<td>0.76</td>
</tr>
</tbody>
</table>

LB = localbest = best of 1D row, 1D column (v1-v3)

MG = medium-grain method (v4.0)

FG = fine-grain model (Çatalyürek and Aykanat 2001)

Opt = optimal using MondriaanOpt (Mondriaan v4.1, soon)
Benchmarking 3 methods vs. optimal partitioning

- 217 matrices from U. Florida collection with \(nz \leq 1000 \)
- 85% were solved to optimality for \(\varepsilon = 0.03 \)
- \(V_{Opt} = 0 \) excluded from test suite
- Medium-grain method solves 87% of test suite within factor 2 of optimal volume.
Matrix steam3

- 80×80 matrix steam3, $nz(A) = 928$
- 1D steam model of oil reservoir (Roger Grimes 1983)
- 20 points, 4 degrees of freedom
- $V = 8$, perfect balance
Matrix divorce

- 50×9 matrix divorce, $nz(A) = 225$
- Divorce laws in the 50 US states
- Row 0 is Alabama, ..., Row 49 is Wyoming
- Column 0 is Incompatibility, Column 1 is Cruelty, ...
- $V = 8$, imbalance $= nz_{\text{max}} - nz_{\text{min}} = 1$
Matrix cage5

- 37×37 matrix cage5, $nz(A) = 233$
- Markov model of DNA electrophoresis, 5 monomers in polymer (Alexander van Heukelum 2003)
- $nz_0 = 106$; $nz_1 = 110$; $nz_{free} = 17$
- $V = 14$, imbalance $= nz_{max} - nz_{min} = 1$
Conclusion

- We have introduced a relatively cheap hypergraph partitioning method that is capable of improving itself over time.
- We minimise the total running time of partitioners and linear solvers by mixing the two operations.
- We also presented an exact branch-and-bound algorithm for computing optimal bipartitionings of small sparse matrices.
- Currently, optimal partitionings have been determined for over 260 matrices.
- Lessons learned from optimal partitioning: the heuristic medium-grain method, the use of volume 0 luck, and the benefit of free nonzeros.
Future work

- Parallelise every component of the self-improving method (linear algebra operations / partitioner / solver / . . . , Jan-Willem Buurlage).
- Expand the MondriaanOpt database: one matrix a day, at http://www.staff.science.uu.nl/~bisse101/Mondriaan/Opt
- Further improve the lower bounds (Timon Knigge)
- Spring 2016: release Mondriaan v4.1 software package, including MondriaanOpt v1.0. \(\beta \) version available upon request.

Thank you!