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Motivation: solving systems of linear equations

I Given a matrix A ∈ Rm×n solve A~x = ~b for ~b ∈ Rm.

I Iterative solvers approximate ~x ∈ Rn efficiently, by looking
only at appropriate subspaces.
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Krylov subspace methods

I Let r0 = b − A~x0, where ~x0 is an initial guess.

I Iteratively construct the family of Krylov subspaces

Kk = span{~r0,A~r0,A
2~r0, . . . ,A

k−1~r0}.

I From the space Kk , take ~xk as the kth guess minimising
the residual:

~xk = argminz∈Kk
||~b − A~z ||.

I Terminate when ||~b − A~xk || < ρ, where ρ is some tolerance
level.
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Parallel sparse matrix-vector multiplication

I Parallel multiplication of a 5× 5 sparse matrix A and a
dense input vector ~v ,

~u = A~v

I 2D matrix distribution over 2 processors
I V = 4 data words of communication
I Perfect load balance: 8 nonzeros per processor
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Sparse matrix partitioning

34× 34 matrix karate,
nz(A) = 156 (Zachary’s karate club, 1977), V = 8
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Chicken-and-egg problem

I Getting a good partitioning can be very expensive. Thus,
you need to find it in parallel. Therefore, you need a good
partitioning.

I We propose the scheme:

1. Begin with an initial partitioning of reasonable quality.
2. While running the iterative solver, try to guess the number

of iterations still required (based on the convergence
behaviour).

3. If this number is large, spend some time refining the
partitioning.

I For our scheme, we require an iterative partitioner. The
one we develop is based on label propagation for graphs.
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Label propagation on graphs

I Goal: Given a graph G = (V ,E ), obtain a p-way
partitioning that minimises the edge-cut (i.e., the number
of edges between different parts).

I Here, we describe a simplified version of the PuLP
algorithm (Partitioning using Label Propagation) [Slota,
Madduri, and Rajamanickam 2014]:

1. Assign to each v ∈ V a random label L(v) ∈ {0, . . . , p−1}.
2. Consider each vertex v in turn, and update to the majority

label amongst its neighbours. Ties are broken randomly.
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Label propagation example, p = 2
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Hypergraph model

I We want to find a p-way partitioning of the matrix A while
minimising the communication volume V .

I A hypergraph H = (V,N ) is a collection of vertices V,
along with a set of nets (or hyperedges) N such that every
n ∈ N is a subset of V.

I Consider a hypergraph H associated to the sparsity pattern
of the matrix A, where each vertex represents a matrix
column, and each net represents the nonzeros in a matrix
row (row-net model).
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Label propagation on graphs

I To update the label (part in the partitioning) of a vertex v ,
we count the labels of its neighbours:

Cs(v) =
∑

(v ,u)∈E

δ(L(u), s), for s = 0, . . . , p − 1.

Here, δ(i , j) = 1 if i = j and δ(i , j) = 0 otherwise.

I We can give more weight to neighbours with high degree,
hoping that vertices of low degree end up at the boundary
of a part:

Cs(v) =
∑

(v ,u)∈E

δ(L(u), s) · deg(u).
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Label propagation on hypergraphs

I The sum will now be over nets instead of edges. Let Nv be
the collection of nets containing v . Then

Cs(v) =
∑
n∈Nv

w(n, s).

I The weight function w should encode two key ideas:
• We do not want to introduce any new labels to a net, and

we should try to eliminate labels with few vertices in the
net.

• When a net is almost pure (single-label) a differently
labeled vertex in this net should strongly prefer taking over
the majority label.
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Quality function

I We will let the weight function depend only on the relative
size of part s in net n,

x(n, s) =
2|{v ∈ n : L(v) = s}|

|n|
− 1.

I A function that represents the key ideas is

w = log

(
1 + x

1− x

)
, for x ∈ (−1, 1).
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Initial partitioning

I The PuLP algorithm initially constructs parts around
vertices with high degree, because this is expected to lead
to good partitionings.

I For hypergraphs, we observe that relatively small nets are
most easily kept pure. We could therefore ignore larger
nets at first.

I We construct a chain of growing hypergraphs:

H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ HM = H.

Here, Hi = (V,N i ), and N i holds the smallest 2i nets.
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Partitioner iteration

I Begin with some initial partitioning, e.g. distribute the
vertices cyclically, choosing the label s = v mod p for
vertex v ∈ V.

I For iteration i with 0 ≤ i ≤ M, consider each vertex v ∈ V
in turn. Choose the label s that maximises Cs(v) in the
hypergraph Hi .

I For i > M, we have Hi = H, and we perform this label
propagation on the entire hypergraph H.
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Balancing criterion

I Let Nit be the projected number of iterations left, fitted to
the norm of the residual as a function of solver iterations.

I Let ∆V be the projected volume decrease, taken as the
decrease of the communication volume in the previous
partitioner iteration.

I Perform a partitioner iteration if

Tpart + NitTsol(V −∆V ) < NitTsol(V ),

where Tpart is the time of a partitioner iteration and
Tsol(V ) the time of a solver iteration.
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HyperPULP in action for 80× 80 matrix steam3

V = 80
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HyperPULP in action for 80× 80 matrix steam3

V = 68
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HyperPULP in action for 80× 80 matrix steam3

V = 52
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HyperPULP in action for 80× 80 matrix steam3

V = 8
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Partitioning volume and time vs. SpMV time

Matrix m n nz VHP VC THP TC Tpart
(in ms) (in ms) (in ms)

cage7 340 340 3084 223 339 3.72 4.30 5.84
cage8 1015 1015 11003 519 1009 5.15 6.30 30.44
cage9 3534 3534 41594 1806 3512 11.07 14.93 113.96
cage10 11397 11397 150645 5420 11356 30.30 43.41 647.76
cage11 39082 39082 559722 20988 38957 102.82 133.43 2656.46
bcspwr06 1454 1454 5300 597 1242 4.98 6.81 12.89
cdde1 961 961 4681 935 961 5.75 5.92 8.31
bp 800 822 822 4534 467 582 4.84 5.10 10.43
well1033 1033 320 4732 206 274 3.96 4.05 8.44
ex24 2283 2283 48737 979 2283 9.56 12.33 112.93

I p = 2 using BSPonMPI on Bull supercomputer

I VHP, VC = communication volume of HyperPULP,
1D cyclic partitioning

I THP, TC = time of 100 sparse matrix–vector
multiplications

I Tpart = partitioning time until local optimum
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Software: mixing partitioners and linear solvers

I Mixing partitioning and solver iterations requires significant
changes to existing software workflows.

I The new framework that was developed, Zee, is an
attempt to provide a unified library that uses familiar
syntax for common operations.

I Completely open-source and free to use, written by
Jan-Willem Buurlage.
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Optimal bipartitioning

7× 7 matrix b1 ss, nz(A) = 15

I Benchmark p = 2 because heuristic partitioners are often
based on recursive bipartitioning.

I Problem p = 2 is easier to solve than p > 2.
I Load balance criterion is

nz(Ai ) ≤ (1 + ε)

⌈
nz(A)

2

⌉
, for i = 0, 1.

I Rounding enables a feasible solution even for ε = 0
and odd nz(A).
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Branch-and-bound method

Piet Mondriaan 1908
Evening - the red tree

I Construct a ternary tree representing all possible solutions
I Every node in the tree has 3 branches, representing a

choice for a matrix row or column:
• completely assigned to processor P(0)
• completely assigned to processor P(1)
• cut

I The tree is pruned by using lower bounds on the
communication volume or number of nonzeros
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Lower bounds L1, L2 on communication volume

c
0
-
-
-

0 1 - - -

I Partial solution: value 0, 1, or c has been assigned to 2
rows and 2 columns

I Row 0 has been cut: lower bound on volume L1 = 1

I Rows 2 and 4 have been implicitly cut: L2 = 2
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Lower bound L3 on communication volume

c
0
-
-
-

0 1 - - -

I Columns 2, 3, 4 have been partially assigned to P(0)

I They can only be completely assigned to P(0) or cut.

I For perfect load balance (ε = 0), we can assign at most 2
more red nonzeros

I Thus we have to cut column 3, and one more: L3 = 2
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Optimal solution

c
0

1
1
0

1 c 0cc

I Optimal solution: volume = 4.

I Total lower bound is LB = L1 + L2 + L3 = 5.

I Prune partial solution since LB > UB.
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Lower bound L4 by conflicting partial assignments

I Permute matrix to create blocks:
• B̂0: completely assigned to processor P(0)
• P0: partially assigned to processor P(0)
• B̂c : cut
• Îc : implicitly cut

I Conflict for nonzero in row block P1 ∩ column block P0:
L4 = 1
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Maximum bipartite graph matching

I Assume row block P0 ∩ column block P1 contains several
nonzeros.

I Define bipartite graph G = (V0 ∪ V1,E ):
• vertex set V0 contains the rows of P0,
• vertex set V1 contains the columns of P1,
• edge set E containing edges (i , j) for aij 6= 0.

I Compute a maximum matching M ⊆ E . Then L4 = |M|,
since every nonzero (edge) in the matching causes at least
one cut row or column.

I Two nonzeros from the matching cannot be in the same
matrix row or column.
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Alternative view: minimum vertex cover

I König’s theorem (1931): maximum matching in bipartite
graph is equivalent to minimum vertex cover (minimum
number of vertices needed to cover at least one end point
for all edges).

I This gives the minimum number of cut rows or columns.



Outline

Introduction

Self-improving

HyperPULP

Balancing

Results

Exact

B&B

Bounds

Results

Pretty pictures

Conclusion and
future work

35

Dynamic maximum matching

I The conflict graph is small, because we solve small sparse
matrix problems and solutions with many conflicts get
pruned early.

I Therefore, we maintain a maximum graph matching as the
conflict graph changes.

I We prove, as a direct consequence of Berge’s theorem
(1957):

• when adding a vertex i with all its edges: sufficient to
search for an augmenting path starting at i ;

• when deleting a matched vertex i with all its edges:
sufficient to search for an augmenting path starting at the
match of i .
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Results for 10 largest matrices solved

Matrix m n nz VLB VMG VFG VOpt Time (s)

stoch air 3754 7517 20267 14 14 13 6 0.39
rosen1 520 1544 23794 8 8 24 8 0.03
add32 4960 4960 23884 40 13 13 4 381.29
mhd4800b 4800 4800 27520 3 2 2 2 161.83
Chebyshev3 4101 4101 36879 4 22 15 4 0.07
rosen2 1032 3080 47536 8 8 33 8 0.05
lp fit2p 3000 13525 50284 25 25 70 21 0.79
rosen10 2056 6152 64192 8 8 26 8 0.10
c-30 5321 5321 65693 1583 43 790 30 6.07
lp fit2d 25 10524 129042 25 25 27 21 0.76

LB = localbest = best of 1D row, 1D column (v1-v3)
MG = medium-grain method (v4.0)
FG = fine-grain model (Çatalyürek and Aykanat 2001)
Opt = optimal using MondriaanOpt (Mondriaan v4.1, soon)
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Benchmarking 3 methods vs. optimal partitioning
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I 217 matrices from U. Florida collection with nz ≤ 1000

I 85% were solved to optimality for ε = 0.03

I VOpt = 0 excluded from test suite

I Medium-grain method solves 87% of test suite
within factor 2 of optimal volume.
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Matrix steam3

I 80× 80 matrix steam3, nz(A) = 928

I 1D steam model of oil reservoir (Roger Grimes 1983)

I 20 points, 4 degrees of freedom

I V = 8, perfect balance
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Matrix divorce

I 50× 9 matrix divorce, nz(A) = 225
I Divorce laws in the 50 US states
I Row 0 is Alabama, . . . , Row 49 is Wyoming
I Column 0 is Incompatibility, Column 1 is Cruelty, . . . ,
I V = 8, imbalance = nzmax − nzmin = 1
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Matrix cage5

I 37× 37 matrix cage5, nz(A) = 233
I Markov model of DNA electrophoresis, 5 monomers in

polymer (Alexander van Heukelum 2003)
I nz0 = 106 ; nz1 = 110 ; nzfree = 17
I V = 14, imbalance = nzmax − nzmin = 1
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Conclusion

I We have introduced a relatively cheap hypergraph
partitioning method that is capable of improving itself over
time.

I We minimise the total running time of partitioners and
linear solvers by mixing the two operations.

I We also presented an exact branch-and-bound algorithm
for computing optimal bipartitionings of small sparse
matrices.

I Currently, optimal partitionings have been determined for
over 260 matrices.

I Lessons learned from optimal partitioning: the heuristic
medium-grain method, the use of volume 0 luck, and the
benefit of free nonzeros.
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Future work

I Parallelise every component of the self-improving method
(linear algebra operations / partitioner / solver / . . . ,
Jan-Willem Buurlage).

I Expand the MondriaanOpt database: one matrix a day, at
http://www.staff.science.uu.nl/∼bisse101/
Mondriaan/Opt

I Further improve the lower bounds (Timon Knigge)

I Spring 2016: release Mondriaan v4.1 software package,
including MondriaanOpt v1.0. β version available upon
request.

“An exact algorithm for sparse matrix bipartitioning”, by Daniël M.

Pelt and Rob H. Bisseling, Journal of Parallel and Distributed

Computing 85 2015, pp. 79–90.

http://www.staff.science.uu.nl/~bisse101/Mondriaan/Opt
http://www.staff.science.uu.nl/~bisse101/Mondriaan/Opt
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Thank you!
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