
Challenges in adapting Particle-In-Cell 
codes to GPUs and many-core 

platforms
L. Villard, T.M. Tran, F. Hariri*, E. Lanti, N. Ohana, S. Brunner 

Swiss Plasma Center, EPFL, Lausanne
A. Jocksch, C. Gheller

CSCS, Lugano
A. Bleuler, R. Teyssier

University of Zurich
* Present address: CERN, Geneva

Acknowledgements: P. Messmer, J. Progsch, NVIDIA

Lyon, 6 April 2016



PIC codes on GPUs and many-core platforms 2

Outline

• Introduction and motivation: 
– Gyrokinetic turbulence
– PIC scheme

• PIC-engine: a test bed for PIC codes on many-core 
heterogeneous architectures

• Drift-Kinetic-engine: a test bed for PIC simulations of 
magnetized plasmas

• Towards full applications
• Conclusions



Introduction: motivation
• Particle-In-Cell (PIC) codes are used for many applications, in 

particular plasma physics: GTC [Z. Lin], ORB5 [T.M.Tran], 
GT3D [Y. Idomura], and astrophysics: RAMSES [R. Teyssier]

• The aim is to investigate how PIC codes can make efficient use 
of new and emerging HPC architectures, in particular many-
core, hybrid. [Decyck2011, Madduri2011, Tang2014]

• Another important issue is how to deal with legacy codes in 
various domain science applications

• This has formed the basis for a PASC Co-Design project 
(Platform for Advanced Scientific Computing), funded at the 
Swiss Confederation level and led by the CSCS, the Swiss 
national Supercomputing Centre

• On top of the generic PIC approach, two specific physics 
applications are targeted : 
– (a) gyrokinetic simulations of magnetized plasmas (ORB5) 
– (b) gravitational problems, e.g. dark matter (RAMSES)

PIC codes on GPUs and many-core platforms 3



PIC codes on GPUs and many-core platforms 4

Gyrokinetic model

• Assume 
• Average out the fast motion of 

the particle around the guiding 
center

• Fast parallel motion, slow 
perpendicular motion (drifts)

• Strong anisotropy of turbulent 
perturbations (// vs perp to B)

cyclotron ionturbulence  

110 010 110 210 310 410

//k kion-driven electron-driven

]m[ 1k

phase space dimension 
reduction 6D ---> 5D






PIC codes on GPUs and many-core platforms 5

Gyrokinetic equations

),,( // vRfs


distribution function of species s in 5D phase space

),( '
//

ss
sss ffC

R
f

dt
dv

R
f

dt
Rd

t
f

















),(fct...),,(fct... // A
dt

dvA
dt
Rd 


 

),( A


 solution of Maxwell’s equations, 
with , j obtained as moments of fs

PDE, 3D

advection-diffusion
PDE, 5D

equations of motion
(orbits)

ODE, 5D

GK codes: GTC, GT3D, ORB5, GYGLES, ELMFIRE, PG3EQ, GTS…



Turbulence in magnetic fusion plasmas



PIC codes on GPUs and many-core platforms 7

2D slice
Snapshot

Contours of 
density 
perturbations

ITER size
(a/s)~1000

109 grid (3D)(*)

2G particles 
(5D)

HELIOS
3x105 core-h 

ITG 
Turbulence 
in an ITER 
plasma

(*) more grid 
points on this 
2D slice than 
pixels



Turbulence and Zonal Flows

PIC codes on GPUs and many-core platforms 8

O
R

B
5 

IT
E

R
 s

ha
pe

 h
yb

rid
 e

-



PIC codes on GPUs and many-core platforms 9

ITG turbulence in ITER

ORB5



PIC codes on GPUs and many-core platforms 10

PASC CoDesign “Particles & Fields” Project
Legacy application codes are heavy / complex  cumbersome to 

work directly on these codes for adaptation to hybrid architectures

1. Extract fundamental algorithmic motives common to PIC codes 
 “PIC-ENGINE”
 Test-bed for choices of fundamental algorithms and 

parallel programming models, on various architectures
 MPI+OpenMP (CPU+MIC); MPI+OpenACC (CPU+GPU)

2. Develop PIC-engine features specifically relevant for gyrokinetic
turbulence simulations
 Strong background magnetic field 
 drift-kinetic, gyro-kinetic
 complex geometry, anisotropy

3. Adapt / Refactor legacy gyrokinetic code ORB5 to implement the 
algorithms and parallel programming models of the PIC-engine



PIC codes on GPUs and many-core platforms 11

Fundamental PIC engine

Particle data positions are “random” wrt grid positions
Critical are particle  grid operations in setrho() and 

grid  particle operations  in accel()



PIC-engine: parallelization

• Multiple-level parallelism:
– Domain decomposition in the z-direction. 
– Domain cloning: grid data replication on each z-domain. 
– 2D bucket sorting of particle data within domains/clones. 

PIC codes on GPUs and many-core platforms 12



PIC-engine: parallelization

PIC codes on GPUs and many-core platforms 13

• Multiple-level parallelism:
– Domain decomposition in the z-direction  MPI
– Domain cloning: grid data replication on each z-domain  MPI 
– 2D bucket sorting of particle data within domains/clones 

Multithreading OpenMP / OpenACC . On GPU: 3 levels of 
multithreading: thread blocks, warps, threads

• “Architecture-aware” parallelism: domain  compute node; 
clone  socket; massive multithreading  MIC, GPU



PIC-engine: summary
• 6D Vlasov-Poisson ; 3D real space grid, cartesian
• MPI+OpenACC/OpenMP hybrid parallel programming models
• Simplified: linear interpolations for particle-grid operations; 

electrostatic; frozen E field (no field solver); Euler explicit; 
equidistant normalized grid x=y=z=1; no background B field

• Several options for particle data structures: AOS or SOA; 
binned or contiguous

• Particle sorting in buckets (=partition of real space; 1 bucket 
contains 1 or more grid cells). Aim is to increase data locality. 
Several algorithms, including a new one performing well for 
cases where < 30-50% of particles have to be moved to a 
different bucket. Allow for particle motion to any bucket (not only 
nearest neighbours) at every time step. 

• Several options for charge assignment (setrho) multithreading 
• Implemented and tested on GPUs, CPUs and MICs

PIC codes on GPUs and many-core platforms 14



15

Multithreading - Charge Assignment 
(1) Collision-resolving : Threads on particles

• Threads (represented by different colors) are associated with particle data

• Race condition: different threads update the same grid data (“collision”)

 Synchronization is needed
 Use of atomics 
 Performance can be increased if particle data is sorted ( data locality)

NB: illustration is 1D grid, but PIC-engine is 3D grid

grid data

particle data
with threads

x

15PIC codes on GPUs and many-core platforms



16

(2) Collision-avoiding, data replication: 
Threads on buckets of particles

• Grid data is replicated from Global to Local data
• Particle data is sorted in buckets (according to their position on the grid)
• Threads are associated with buckets of particle data
• Each thread does the charge assignment on its Local Grid data 
 NO race condition

• Ghost-cell data are added separately to the global grid data
• NEED PARTICLE SORTING at every time step

Global grid
data

particle data
with threads

x

16

bucket 1
Thread 1

bucket 2
Thread 2

bucket 3
Thread 3

bucket 4
Thread 4

Local grid
data

PIC codes on GPUs and many-core platforms



17

(3) Collision-avoiding : Threads on grid

• Threads (represented by different colours) are associated with grid data
• Different Threads may read the same particle data 

(Do not need to update particle data)
• NO Race condition
• NO Synchronization needed

BUT Each Thread must loop over all the particles to read data: COSTLY

grid data

particle data

with threads
x

17PIC codes on GPUs and many-core platforms



18

(4) Collision-avoiding, Threads on grid + 
particles sorted in buckets

• Threads are associated with grid data
• Particle data is sorted in buckets (according to their position on the grid) 
• Each grid (thread) must look into particles of its own bucket and nearest 

neighbour
• No data replication
• Collision-free: no synchronization required
• NEED PARTICLE SORTING at every time step

grid data

particle data

threads
x

bucket1 bucket2 bucket3 bucket4

18PIC codes on GPUs and many-core platforms



PIC engine on GPU – setrho

PIC codes on GPUs and many-core platforms 19

• Solid lines for contiguous data structure, dashed lines for binned 
data structure. Piz Daint 1-node, NVIDIA Tesla K20X.

threads 
on grids
(collision-free)

threads 
on particles
+ atomics

threads on buckets 
+ atomics 

threads on 
buckets + data 
replication

Full sort: 1 bucket=1 grid cell



PIC-engine on CPU vs GPU

• Timings for various algorithmic options. 1 Piz Daint node (1x8 
Intel SandyBridge, 1x Nvidia Tesla K20X). The best GPU 
version is up to 3.4 times faster than the best CPU version 

PIC codes on GPUs and many-core platforms 20

CPU GPU



PIC-engine: performance model
• Acknowledgement: Peter Messmer, Jakob Progsch (NVIDIA)
• Assumes memory-bound, several idealized simplifications

PIC codes on GPUs and many-core platforms 21

• Lack of native atomics on NVIDIA Tesla K20X for double 
precision is limiting performance of setrho

• Better result of setrho in single precision is due to the model not 
accounting for the impact of caching



PIC-engine on CPU and MIC
• Application of sorting improves timings of sethro, push and accel but 

the cost of sorting almost erases the gains on conventional CPU. 
• Tested on various CPUs: Sandybridge 1x8 (Piz Daint), 2x8 (Helios), 

Haswell 2x12 (Piz Dora). Optimization of  Nclones vs Nthreads, 
keeping Nclones x Nthreads = const 1 clone per socket is optimal

• On Helios:   2 x Xeon Phi (KNC), similar timings than on CPUs for 
large number of particles/cell. Optimum: 20 clones, 24 threads

PIC codes on GPUs and many-core platforms 22



Towards Gyrokinetic Application

• A Drift-Kinetic-Engine was developed from the PIC-engine. 
• MPI+OpenACC/OpenMP – single source files
• Domain decomposition (z), domain cloning and multithreading
• Turbulence in a sheared magnetized plasma slab
• W.r.t. PIC-engine, the DK-engine includes:

– Drift Kinetic Equations in physical units
– Strong anisotropy (background magnetic field)
– Finite element 3D field solver (quasineutrality)
– B-splines up to 4th order
– Control variates (delta-f) scheme
– DFT in y and z (requiring parallel data transpose) and field-

aligned Fourier filtering
– 3D bucket sorting within z-domains & clones

PIC codes on GPUs and many-core platforms 23



DK-engine: results

PIC codes on GPUs and many-core platforms 24

Pure MPI MPI+OpenMP MPI+OpenACC



DK-engine: results

• GPU outperforms best CPU version – more so for higher order splines

PIC codes on GPUs and many-core platforms 25



DK-engine: strong scaling

• 128×512×256 cells, 4.096x109 particles, (244 particles/cell),    
32 clones, 8 threads, 4 to128 z-domains, 128 to 4096 nodes. 
Excellent parallel scalability up to ~full PIZ DAINT.

• Parallel move (sort in z-direction across nodes, dark blue) may 
become a problem for very large grids and number of nodes. 
Challenging case here: vmaxt=7z

PIC codes on GPUs and many-core platforms 26



Community involvement

• SPC activities are embedded in the EUROfusion Consortium

PIC codes on GPUs and many-core platforms 27

SPC

U. Warwick
Prof. B.F. McMillan et al.
ORB5 co-developpers

EUROfusion
High Level Support Team
Staff member Dr. T.M. Tran

Max-Planck IPP
Dr A. Bottino et al.
ORB5 co-developpers

Max-Planck IPP
Prof. E. Sonnendrücker et al.
Numerical methods

EUROfusion
HPC Working Group
Successor of HELIOS (~8 PFLOPS)
Dedicated to EU Fusion



Conclusions
• We have progressed on the path to make use of many-, multi-

core and GPU-equipped supercomputers for applications based 
on the PIC scheme
– New software: PIC-engine, DK-engine
– Demonstrated performance and scalability on hybrid systems
– Demonstrated capability, performance and potential of hybrid 

programming models MPI+OpenMP and MPI+OpenACC
– Findings about the performance of the PIC method and its 

relation to particular hardware features (e.g. atomics on the 
GPU)  useful feedback to Cray/NVIDIA

• Future steps: developer community will be directly involved in the 
refactoring project of ORB5 (effort led by T.M. Tran)
– Use of directive-based programming models  code 

refactoring does not require a complete rewriting
• Charge assignment (setrho) from PIC-engine is being 

implemented in the astrophysics code RAMSES

PIC codes on GPUs and many-core platforms 28


