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Outline

• Introduction and motivation: 
– Gyrokinetic turbulence
– PIC scheme

• PIC-engine: a test bed for PIC codes on many-core 
heterogeneous architectures

• Drift-Kinetic-engine: a test bed for PIC simulations of 
magnetized plasmas

• Towards full applications
• Conclusions



Introduction: motivation
• Particle-In-Cell (PIC) codes are used for many applications, in 

particular plasma physics: GTC [Z. Lin], ORB5 [T.M.Tran], 
GT3D [Y. Idomura], and astrophysics: RAMSES [R. Teyssier]

• The aim is to investigate how PIC codes can make efficient use 
of new and emerging HPC architectures, in particular many-
core, hybrid. [Decyck2011, Madduri2011, Tang2014]

• Another important issue is how to deal with legacy codes in 
various domain science applications

• This has formed the basis for a PASC Co-Design project 
(Platform for Advanced Scientific Computing), funded at the 
Swiss Confederation level and led by the CSCS, the Swiss 
national Supercomputing Centre

• On top of the generic PIC approach, two specific physics 
applications are targeted : 
– (a) gyrokinetic simulations of magnetized plasmas (ORB5) 
– (b) gravitational problems, e.g. dark matter (RAMSES)

PIC codes on GPUs and many-core platforms 3



PIC codes on GPUs and many-core platforms 4

Gyrokinetic model

• Assume 
• Average out the fast motion of 

the particle around the guiding 
center

• Fast parallel motion, slow 
perpendicular motion (drifts)

• Strong anisotropy of turbulent 
perturbations (// vs perp to B)
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Gyrokinetic equations
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GK codes: GTC, GT3D, ORB5, GYGLES, ELMFIRE, PG3EQ, GTS…



Turbulence in magnetic fusion plasmas
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Turbulence and Zonal Flows
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ITG turbulence in ITER

ORB5
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PASC CoDesign “Particles & Fields” Project
Legacy application codes are heavy / complex  cumbersome to 

work directly on these codes for adaptation to hybrid architectures

1. Extract fundamental algorithmic motives common to PIC codes 
 “PIC-ENGINE”
 Test-bed for choices of fundamental algorithms and 

parallel programming models, on various architectures
 MPI+OpenMP (CPU+MIC); MPI+OpenACC (CPU+GPU)

2. Develop PIC-engine features specifically relevant for gyrokinetic
turbulence simulations
 Strong background magnetic field 
 drift-kinetic, gyro-kinetic
 complex geometry, anisotropy

3. Adapt / Refactor legacy gyrokinetic code ORB5 to implement the 
algorithms and parallel programming models of the PIC-engine
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Fundamental PIC engine

Particle data positions are “random” wrt grid positions
Critical are particle  grid operations in setrho() and 

grid  particle operations  in accel()



PIC-engine: parallelization

• Multiple-level parallelism:
– Domain decomposition in the z-direction. 
– Domain cloning: grid data replication on each z-domain. 
– 2D bucket sorting of particle data within domains/clones. 
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PIC-engine: parallelization
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• Multiple-level parallelism:
– Domain decomposition in the z-direction  MPI
– Domain cloning: grid data replication on each z-domain  MPI 
– 2D bucket sorting of particle data within domains/clones 

Multithreading OpenMP / OpenACC . On GPU: 3 levels of 
multithreading: thread blocks, warps, threads

• “Architecture-aware” parallelism: domain  compute node; 
clone  socket; massive multithreading  MIC, GPU



PIC-engine: summary
• 6D Vlasov-Poisson ; 3D real space grid, cartesian
• MPI+OpenACC/OpenMP hybrid parallel programming models
• Simplified: linear interpolations for particle-grid operations; 

electrostatic; frozen E field (no field solver); Euler explicit; 
equidistant normalized grid x=y=z=1; no background B field

• Several options for particle data structures: AOS or SOA; 
binned or contiguous

• Particle sorting in buckets (=partition of real space; 1 bucket 
contains 1 or more grid cells). Aim is to increase data locality. 
Several algorithms, including a new one performing well for 
cases where < 30-50% of particles have to be moved to a 
different bucket. Allow for particle motion to any bucket (not only 
nearest neighbours) at every time step. 

• Several options for charge assignment (setrho) multithreading 
• Implemented and tested on GPUs, CPUs and MICs
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Multithreading - Charge Assignment 
(1) Collision-resolving : Threads on particles

• Threads (represented by different colors) are associated with particle data

• Race condition: different threads update the same grid data (“collision”)

 Synchronization is needed
 Use of atomics 
 Performance can be increased if particle data is sorted ( data locality)

NB: illustration is 1D grid, but PIC-engine is 3D grid

grid data

particle data
with threads

x
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(2) Collision-avoiding, data replication: 
Threads on buckets of particles

• Grid data is replicated from Global to Local data
• Particle data is sorted in buckets (according to their position on the grid)
• Threads are associated with buckets of particle data
• Each thread does the charge assignment on its Local Grid data 
 NO race condition

• Ghost-cell data are added separately to the global grid data
• NEED PARTICLE SORTING at every time step

Global grid
data

particle data
with threads

x
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bucket 1
Thread 1

bucket 2
Thread 2

bucket 3
Thread 3

bucket 4
Thread 4

Local grid
data
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(3) Collision-avoiding : Threads on grid

• Threads (represented by different colours) are associated with grid data
• Different Threads may read the same particle data 

(Do not need to update particle data)
• NO Race condition
• NO Synchronization needed

BUT Each Thread must loop over all the particles to read data: COSTLY

grid data

particle data

with threads
x
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(4) Collision-avoiding, Threads on grid + 
particles sorted in buckets

• Threads are associated with grid data
• Particle data is sorted in buckets (according to their position on the grid) 
• Each grid (thread) must look into particles of its own bucket and nearest 

neighbour
• No data replication
• Collision-free: no synchronization required
• NEED PARTICLE SORTING at every time step

grid data

particle data

threads
x

bucket1 bucket2 bucket3 bucket4
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PIC engine on GPU – setrho
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• Solid lines for contiguous data structure, dashed lines for binned 
data structure. Piz Daint 1-node, NVIDIA Tesla K20X.

threads 
on grids
(collision-free)

threads 
on particles
+ atomics

threads on buckets 
+ atomics 

threads on 
buckets + data 
replication

Full sort: 1 bucket=1 grid cell



PIC-engine on CPU vs GPU

• Timings for various algorithmic options. 1 Piz Daint node (1x8 
Intel SandyBridge, 1x Nvidia Tesla K20X). The best GPU 
version is up to 3.4 times faster than the best CPU version 
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PIC-engine: performance model
• Acknowledgement: Peter Messmer, Jakob Progsch (NVIDIA)
• Assumes memory-bound, several idealized simplifications
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• Lack of native atomics on NVIDIA Tesla K20X for double 
precision is limiting performance of setrho

• Better result of setrho in single precision is due to the model not 
accounting for the impact of caching



PIC-engine on CPU and MIC
• Application of sorting improves timings of sethro, push and accel but 

the cost of sorting almost erases the gains on conventional CPU. 
• Tested on various CPUs: Sandybridge 1x8 (Piz Daint), 2x8 (Helios), 

Haswell 2x12 (Piz Dora). Optimization of  Nclones vs Nthreads, 
keeping Nclones x Nthreads = const 1 clone per socket is optimal

• On Helios:   2 x Xeon Phi (KNC), similar timings than on CPUs for 
large number of particles/cell. Optimum: 20 clones, 24 threads
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Towards Gyrokinetic Application

• A Drift-Kinetic-Engine was developed from the PIC-engine. 
• MPI+OpenACC/OpenMP – single source files
• Domain decomposition (z), domain cloning and multithreading
• Turbulence in a sheared magnetized plasma slab
• W.r.t. PIC-engine, the DK-engine includes:

– Drift Kinetic Equations in physical units
– Strong anisotropy (background magnetic field)
– Finite element 3D field solver (quasineutrality)
– B-splines up to 4th order
– Control variates (delta-f) scheme
– DFT in y and z (requiring parallel data transpose) and field-

aligned Fourier filtering
– 3D bucket sorting within z-domains & clones
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DK-engine: results
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Pure MPI MPI+OpenMP MPI+OpenACC



DK-engine: results

• GPU outperforms best CPU version – more so for higher order splines

PIC codes on GPUs and many-core platforms 25



DK-engine: strong scaling

• 128×512×256 cells, 4.096x109 particles, (244 particles/cell),    
32 clones, 8 threads, 4 to128 z-domains, 128 to 4096 nodes. 
Excellent parallel scalability up to ~full PIZ DAINT.

• Parallel move (sort in z-direction across nodes, dark blue) may 
become a problem for very large grids and number of nodes. 
Challenging case here: vmaxt=7z
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Community involvement

• SPC activities are embedded in the EUROfusion Consortium
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Dr A. Bottino et al.
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Max-Planck IPP
Prof. E. Sonnendrücker et al.
Numerical methods
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Conclusions
• We have progressed on the path to make use of many-, multi-

core and GPU-equipped supercomputers for applications based 
on the PIC scheme
– New software: PIC-engine, DK-engine
– Demonstrated performance and scalability on hybrid systems
– Demonstrated capability, performance and potential of hybrid 

programming models MPI+OpenMP and MPI+OpenACC
– Findings about the performance of the PIC method and its 

relation to particular hardware features (e.g. atomics on the 
GPU)  useful feedback to Cray/NVIDIA

• Future steps: developer community will be directly involved in the 
refactoring project of ORB5 (effort led by T.M. Tran)
– Use of directive-based programming models  code 

refactoring does not require a complete rewriting
• Charge assignment (setrho) from PIC-engine is being 

implemented in the astrophysics code RAMSES
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