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Tokamak and stellarator physics




Controlled thermonuclear fusion
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» Fusion conditions:
nTTE large enough.

» T ~ 100 million °C

fully ionized gas=plasma.

» Magnetic confinement (ITER)

» Inertial confinement
> by laser (LMJ, NIF)
> by heavy ions




The ITER project W

International project involving European Union, China, India, Japan,
South Korea, Russia and United States aiming to prove that magnetic
fusion is viable source for energy.
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Combutibles primaires  Déchets de combustion




Two devices for magnetic fusion:
tokamaks and stellarators

Tokamak Stellarator




Modelling of Tokamak plasmas W

v

A plasma is a collection of different species of charged particles.

» Basic model is Newton's law with pairwise interaction between
particles which is largely dominated by electromagnetic force. Too
many particles n ~ 109m~3, numerically intractable.

» First reduced model: Kinetic Vlasov-Maxwell (4Landau collisions)
» Second reduced model: multi-fluid Euler-Maxwell
» Third reduced model: single fluid MHD

» Other reduced model: Maxwell’'s equation with dielectric tensor
representing plasma




Kinetic models: Turbulent transport W

» Plasma not very collisional and far from fluid state
= Kinetic description necessary for shorter time scales. Fluid and
kinetic simulations of turbulent transport yield very different results.

» Vlasov (6D phase space) coupled to 3D Maxwell

g+v-vxf+i(E+va)-va=0.
ot m

» Toroidal geometry

Toroidal
Direction

Magnetic
field line




MHD: ELM W

>

In the tokamak large scale instabilities can appear in the plasma.

» The simulation of these instabilities is an important subject for

ITER.

Example of Instabilities in the tokamak :
> Disruptions: Violent instabilities which can critically damage the Tokamak.
> Edge Localized Modes (ELM): Periodic edge instabilities which can damage the
Tokamak.
These instabilities are linked to the very large gradient of pressure

and very large current at the edge.

Many aspects of these instabilities are described by fluid models
(MHD resistive and diamagnetic or extended)




Two-fluid model W

» Computing the moments of the Vlasov equation we obtain the
following two fluid model

Otns + Vi - (msnsus) =0, o
Ot(msnsus) + V- (msnsus @ ug) + Vips + VL' My =0sE+ Js x B,

at(msnses) + V- (msnsusfs + Psus) + V- <ns “Us + qs) = o0sE - us,

» coupled with Maxwell’s equations
1
—O0tE =V x B = —pod,
c
B+ V x E =0,

vV.-B=0, V.E=2.
€0

> ng = [ps fsdv the particle number , msnsus = [ps msvfsdv the
momentum, ¢s the total energy and ps = msns the density.

> Isotropic pressures are ps, stress tensors Mg and heat fluxes qs.
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MHD: assumptions and generalized Ohm'’s law W

> quasi neutrality assumption: n; = ne = p ~ mjn; + O(),
u~ui+ O0(7¢)

» Magneto-static assumption : V x B = poJ + O(?)

» We define p = p; + pe and u = p,u,-‘;peue

» Consequence of the quasi-neutrality:

ue:u—mJ+O<%>
ep mj

» Summing the mass and moment equation for the two species we
obtain:

pf)tU+pu-VU+Vp=J><B—v-l‘l+0<'::>

> For the pressure equation, we replace the electronic velocity by full
velocity using the previous relation.
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Extended MHD: model

Oep+V - (pu) =0, o
pOtu+ pu-Vu+Vp=JxB-V- N,

Otpi +

1 =
1 771u~Vp,-+ﬁp,-V~u+V~q,-:—ﬂ,-:Vu,

1 1 m v
Otpe + ——u - Vpe + LperU+V~qe = —J- (Vpe f'ypefp>
v=1 -1 -1 y—1lep p
Me:Vu+.: Vv (Z’—pJ) +lJP,

0B=-Vx(—uxB+nt- v N "vp.+ T« B)),
pe pe pe

V.-B=0, VxB=J.

> Remark: We can write easily the equation on the total pressure pe + p;. Possible
simplification pe = p/2.

» In Black: ideal MHD. In Black and blue: Viscous-resistive MHD. All the terms:
Extended MHD.
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Microwave beams in plasmas W

> RF waves are typically used in magnetic fusion plasmas for

» Heating: wave energy is transferred to particle motion exploiting the
wave-particle resonances in a plasma, selectively heating electrons or
ions

» Current drive: transfer momentum to plasma in order to induce
toroidal current to generate poloidal confinement field.

» Diagnostics: temperature and density of a plasma can be determined
by probing the plasma with RF waves

» Standard computations are based on short-wavelength asymptotics
(ray tracing, beam tracing, ...).

» Such methods fail in some cases. So called full-wave solvers are then
the model of choice.

13



Full-wave solvers W

» Full-wave means Direct numerical solution of Maxwell's equations
(including the “full” range of wavelengths).

» Popular approach: Finite Difference Time Domain (Yee's scheme)
augmented with one equation for the induced current density J,

OtE — cV X B+ wpF =0,
0iB+cV x E=0, F =4nJ/wp.
OtF —wpE —we x F+vF =0,

(For v = 0, this is a symmetric hyperbolic system; conserved
energy.)
> Does not correctly take into account real geometry.

> New full wave solver based on structure preserving finite elements
(FEEC: Arnold-Falk-Winther) under development.
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Applications: Beam scattering by turbulence W

» Turbulence at the edge of the plasma produces density blobs.
» Time-scale separation: We can consider blobs frozen in time.
» Each blob acts as a defocusing lens that can even split the beam:

: Wave rild \\\\\\\\\\\\ I A wave beam injected from
- A |12 the left boundary into a
B i = ot donm Y ot

z

Wave Field 100
0.75

- The same beam in presence
o i |t |
"B nh\|\lw\\\\\\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ i . o

0 100

» Standard beam tracing techniques do not apply for such beams.
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Applications: Reflectometry diagnostics W

» Wave beams are reflected back when the electron density is
sufficiently large (cut-off).

» From the phase shift of the reflected beam one obtains information
on, e.g., the density profile.

» A fold caustic near the cut-off limits the applicability of ray and
beam tracing methods:

25 28

26
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refracted beam reflected beam
(beam tracing applies) (full-wave required)
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HPC in the european Fusion community
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HPC resources W

» European Fusion community organised within the EUROfusion
consortium supported by EU

> Next to experimental devices HPC plays an important role:
dedicated resources

» HPC-FF (Germany): 2009-2013, 100 Tflops, 1080 nodes, 8-core
Intel-Nehalem, 8640 cores. Part of JUROPA cluster at Jiilich.

» HELIOS (Japan): 2012-2016, 1.5 Petaflops, 4500 nodes, 16-core Intel
SandyBridge, 72000 cores. Fully dedicated to fusion: 50% for Europe,
50% for Japan.

» New machine in Italy available at end of this year. Will be part of
bigger cluster at CINECA.
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The High Level Support Team W

» Main tasks for HLST
The HLST team is a support unit to ensure optimal exploitation of
dedicated resources since 2009: HPC-FF, HELIOS, ...

» it is not focused on its own academic research.

» Support for code development

» Parallelise codes using e.g. OpenMP and/or MPI standards for
massively parallel computers

» Improve the performance of existing parallel codes both at the single
node and inter node levels

» Support the transfer of codes to new multiprocessors architectures

» Choose and if necessary adapt algorithms and/or mathematical library
routines to improve applications for the targeted computer
architectures

19



The NMPP division at IPP

» Numerical Methods in Plasma Physics division at Max-Planck
Institute for Plasma Physics

» Develop robust, verified and well-documented codes for plasma
physics and magnetic fusion.

» From mathematical modeling to High Performance Computing

» Models derived rigorously from first principles via asymptotic
reduction: kinetic, gyrokinetic, fluid, MHD, ....

» Emphasis on well-posedness, energy principle, mathematical
structure: basis for verification tests

» Discretisation adapted to features of model: Structure preserving
discretisation

» Single core efficiency and parallel scaling important issues.
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NMPP code suite W

v

v

v

v

Well written, tested and documented codes in Fortran 2003

Can be used for testing new numerical concepts, learning, or as
libraries for productions codes. Release versions expected this year.

Collaborative development under Gitlab at MPCDF
Major codes:

>

SelalLib: Kinetic and gyrokinetic, Semi-Lagrangian and PIC (with
Inria, U. Strasbourg, CNRS, CEA)

» Django-Jorek: Finite Element code aimed at MHD (with Inria)
» Spiga: Finite Element code based on Isogeometric analysis for

Maxwell: coupled with particle tracker as a Full Orbit code, Full
Wave code in frequency domain under development
FEMilaro: Finite Element code for fluid models (SOLPS)

21
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MHD simulations
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The JOREK code

» Models: reduced MHD models (reduction of
the solution space) using potential formulation
of the fields.

» Physics in models: two fluid and neoclassical
effect, coupling with neutral ...
» Typical run of JOREK:
» Computation of the equilibrium on a grid
aligned to the magnetic surfaces.

» Computation of the MHD instabilities
perturbing the axisymmetric equilibrium.
. Figure: Aligned grid
Numerical methods & gnec &
» Spatial Discretization: 2D Cubic Bezier finite elements + Fourier
expansion.
» Temporal discretization: Implicit scheme + Gmres + Toroidal
modes Block Jacobi preconditioning

23



New paths explored for MHD simulations

» JOREK code

» Verification and non regression tests
» Scaling issue with present algorithm:
> Preconditioner for linear system not efficient for strongly non linear
problems

> New preconditioner with better properties has been derived and just
being tested

> Matrix free implementation, where jacobian matrix not explicitly
computed, possible. This will overcome the memory limitations.
» Simplified and modular version of numerical core of JOREK being
developed for faster testing and evaluation of numerical algorithms.

» Evaluation of DG code FLEXI from Stuttgart for fusion applications.
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Verification of the JOREK model W

» The JOREK code implements different variants of reduced resistive
MHD. Stability issues observed in some situations.

» A well posed model needs to enforce conservation or dissipation of
total energy.

» Original model slightly modified so that the following energy
theorem could be proved:

B, v 1 / | A%y / 2
=— A
dt ( 2 e 2 +’)/ 1p Qn( ) R2 QV| LU|

Iv[?

with E = |B| +p5 + ﬁp the total energy,
v = —RVu X ey + V||B and 1 the poloidal magnetic flux.

» Modified model has been implemented and indeed remains stable in
situations where the original model is not.

25



Physics Based Preconditioner W

» Present JOREK preconditioner based on direct solver for each
Fourier mode

» Exact for linear problems, but very inefficient in nonlinear case.

» Stiff problem due to hyperbolic structure with very different wave
speeds

» Rewrite the hyperbolic system as a second order equation
(well-conditioned): parabolization (L. Chacon).

> First tests on simpler problem exhibiting similar features.

» can be extended to the nonlinear hyperbolic system as MHD (and
resistive MHD with additional splitting steps).

26



Damped waves problem

» We consider the damped wave problem

0 1
PLivau=0
ot ¢
Oou 1 o
L IVUp=_—
ot + = VP 2"
with o opacity, c light speed and ¢ ~ % R %

» When ¢ — 0 the model can be approximated by
Op—V - (%VP) =0.

» This problem is stiff in time. CFL condition is At < Cieh + Goe?.
= Use implicit scheme but the model is ill-conditioned

» Two reasons for the ill-conditioning:

1. the stiff terms (which depend of ¢)
2. the hyperbolic structure.

27



Results with classical Solvers/Preconditioners

» Comparison between GMRES method with different preconditioning
» Jac (Jacobi), ILU (Incomplete LU), MG (Multigrid), SOR.
» Physics Based (PB)
» ¢1 =107% and e, = 1010.
Mesh / solvers Jac ILU(0) | ILU(4) MG(2) | SOR PB
x4 o |V v v v v v
$ €1 iter | 27 11 1 38 8 1
time | 72 E-4 | 1.3E-3 | 7.7E-3 | 1.5E-2 | 1.4E-3 | 2.1E-3
o |/ v v X v 7
4x4 e iter | 2.1E44 | 11 1 - 8 1
time | 3.6E-1 | 1.3E-3 | 7.7E-3 | - 15E-3 | 2.1E-3
o |V v v X v 7
16 % 16, 1 iter | 1.5E44 | 18 9 140 | 20 1
time | 50E-0 | 2.3E-2 | 40E-1 | 5.0E-1 | 5.0E-2 | 2.1E-2
o | X v v X v v
16> 16, e2 iter | - 18 9 - 20 1
time | - 2.3E-2 | 40E-1 | - 5.0E-2 | 2.1E-2
o | X X v X X X
64 x 64, &2 iter | - - 632 - - 1
time | - - 2.0E+1 | - - 4 .2E-1
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Results with the new Preconditioners W

» Comparison between GMRES method with different Finite Elements.
HB: Cubic Hermite-Bézier, BS(p) splines of degree p at t = dt and

hdt = cst
Mesh HB BS(3) | BS(4) | BS(5)
cv v 4 v v
1616 | wor | 3 2 1 1
error | 2.4E-11 | 7.7E-16 | 3.6E-11 | 1.5E-13
time | 0.38 4.14E-2 | 1.62E-2 | 2.1E-2
ov 7 7 7 7
2x32 | ier |6 2 1 1
error | 3.8E-13 | 5.8E-14 | 1.4E-13 | 5.2E-15
time | 1408 | 0.18 55E-2 | 7.28E-2
ov 7 7 7 7
6464 | e | 16 1 1 1
error | 43E-11 | 2.3E-12 | 8.8E-14 | 1.1E-13
time | 461.1 0.15 0.24 0.44

» The convergence tolerance is 10719 and iter_max=100’000.

» The Preconditioner-solver tolerance is 10~/ for convergence and
iter_max=1'000.
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Comments on new preconditionner W

» The good results for B-Splines (with maximum regularity) can be
explained by the spectral properties of B-Splines discretized matrices,

» The global time can be improved by deriving appropriate
preconditioners or solvers for the subsystems.
» The Generally Locally Toeplitz theory is a very good framework to
study and improve the efficiency of a preconditioner
» H(div, Q) and H(curl, Q) elliptic variational problems (needed for
Maxwell, Stokes and some Physics-based subsystems)
» Fast MultiGrid solver for elliptic problems (does not depend on the
degree, nor the domain dimension)

30



Exploring alternatives for JOREK's fully implicit Fi- W
nite Elements: the FLEXI DG-SEM code

» FLEXI: Highly scalable explicit 3D DG-SEM solver, high order,
unstructured hex-meshes for general conservation laws

> Resistive full MHD & anisotropic diffusion implemented and
validated

» Difficulties: Find semi-implicit time integration maintaining
scalability of the solver!

> Initialization: domain geometry, mesh and MHD equilibrium needed

» Objectives:

» Assess DG versus JOREK's FE for different fusion applications

» Explore benefits of non conforming locally field aligned mesh which
is easier to handle with DG, including in the vicinity of the
separatrix.

31



Discontinuous Galerkin Method

» From high order Finite Element Method (p-FEM):
Approximation solution is a polynomial inside an element
» From Finite Volume (FV):
Riemann solvers to resolve discontinuity at element interfaces
= High order scheme, low dissipation and dispersion errors
= Allows coarse unstructured meshes for complex geometries
= High potential for parallel scaling due to element local operators

32



Strong Scaling of FLEXI W

10

117.70 %,

——<+— N=5nElem=1024 ' ———— N=5nElem=1024
—— N=5nElem=8192 —@— N=8 nElem=1024
ideal

——=— N=5nElem=128 66.01 10 ——=— N=3nElem=1024

61.39%

ideal
23.27 %

=

Speedup [-]
3,
T

Speedup [-]

10 10 1 10
#Core [-] #Core [-]

N =5 & different mesh sizes N = 3/5/8 on same mesh

1
10°

Strong scaling on Cray XE6, HLRS Stuttgart

Always up to one element per core

Number of cores is doubled in each step

Speedup > 100% owing to cache effects (low memory consumption)
= ldeal strong scaling for ~ 1000 DOF per core, corresponding to

one N8-elem., four N5-elem. or eight N3-elem. per core

vVvyYVyYyywy
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High order meshes

=

» Block-structured meshes of cylinder (avoid singularity)
» High order polynomial element mappings

» Cylindrical mesh = mapped to torus

34



High order meshes

» Mapping approach allows for field alignment in toroidal direction
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High order meshes

» Interface to VMEC:
Allows to map Tokamak and Stellarator configurations:

= get mesh geometry & MHD equilibrium 1

lWMEC input provided by C. Nuehrenberg, Greifswald
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High order meshes

» Interface to VMEC:
Allows to map Tokamak and Stellarator configurations:
= get mesh geometry & MHD equilibrium 1
LVMEC input provided by C. Nuehrenberg, Greifswald
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2D MHD Simulation of a Current Hole Instability W

B=1-10%n=1- 10" (512 N3-elems)

velmag 10

o.oosl
0004 107 /\
//
-8 /
0,002 §10 /
T E w0 /
I ) / y~1.3e-03
0 5 7
£
Z
10—12 F
10—13 1 1 1
0 10* 2x10* 3x10* 4x1
Talfven

initial current profile kinetic energy growth

» Cylindrical domain, 512 N3 elements , setup: Czarny and Huysmans?

» MHD equilibrium from radial current profile

= Growth rate and solution compares well with reference
20. Czarny,G. Huymans, Bezier surfaces and FE for MHD simulations, JCP 226, 2008
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2D MHD Simulation of a Current Hole Instability W

B=1-10% 1=1- 10° (512 N3-elems)

10° T T T
107 /"/\
//
@ 10°
5 /
g 10
9 // y~1.3e-03
by /
E /
4
10—12 f
10—13 1 1 1
0 10* 2x10" 3x10* 4x1
Talfven

current profile at peak kin. energy kinetic energy growth

» Cylindrical domain, 512 N3 elements , setup: Czarny and Huysmans?

» MHD equilibrium from radial current profile
= Growth rate and solution compares well with reference
20. Czarny,G. Huymans, Bezier surfaces and FE for MHD simulations, JCP 226, 2008
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Anisotropic diffusion in z-pinch field

Solution
0.01

=0.0075

0,005

EEO 0025
0

Time: 0.0

» Diffusion of a blob in Z-pinch magnetic field

> Parallel diff. x; = 1. perpendicular diff. x, =0

» Periodic cylindrical domain, 1800 N5 elements

= Field aligned & same accuracy: factor 8 fewer elements!
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Anisotropic diffusion in z-pinch field

Solution

O.O]E

=0.0075

0,005

Eo 0025
0

Time: 40.0

» Diffusion of a blob in Z-pinch magnetic field

> Parallel diff. x; = 1. perpendicular diff. x, =0

» Periodic cylindrical domain, 1800 N5 elements

= Field aligned & same accuracy: factor 8 fewer elements!
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Anisotropic diffusion in z-pinch field

Solution

O.O]E

=0.0075

0,005

Eo 0025
0

Time: 80.0

» Diffusion of a blob in Z-pinch magnetic field

> Parallel diff. x; = 1. perpendicular diff. x, =0

» Periodic cylindrical domain, 1800 N5 elements

= Field aligned & same accuracy: factor 8 fewer elements!
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Anisotropic diffusion in z-pinch field

Solution

O.O]E

=0.0075

0,005

Eo 0025
0

Time: 120.0

» Diffusion of a blob in Z-pinch magnetic field

> Parallel diff. x; = 1. perpendicular diff. x, =0

» Periodic cylindrical domain, 1800 N5 elements

= Field aligned & same accuracy: factor 8 fewer elements!
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Gyrokinetic and kinetic models
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Numerical issues with 6D Vlasov-Maxwell W

» Posed in 6D phase space! Dimension reduction if possible would
help.

> Large magnetic field imposes very small time step to resolve the
rotation of particles along field lines.

Arl\l\l\[\
7 _SZ _SZ SZ

» Physics of interest is low frequency. Remove light waves: Darwin
instead of Maxwell.

» Debye length small compared to ion Larmor radius. Quasi-neutrality
assumption ne = n; needs to be imposed instead of Poisson
equation for electric field.
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Towards a reduced model

> Scale separation: fast motion around magnetic field lines can be
averaged out.

> Idea: separate motion of the guiding centre from rotation by a
change of coordinates.

» For constant magnetic field can be done by change of
coordinates: X = x — p; guiding centre + kind of
cylindrical coordinates in v: Vi, b= %mvﬁ/wc, 0.

» Mixes position and velocity variables.

> Perturbative model for slowly varying magnetic field.
> Several small parameters
» gyroperiod, Debye length
» Magnetic field in tokamak varies slowly: g = |[VB/B|
» Time dependent fluctuating fields are small.
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Geometric asymptotic reduction

Long time magnetic confinement of charged particles depends on
existence of first adiabatic invariant (Northrop 1963):

= %mvﬁ_/wc.

Geometric reduction based on making this adiabatic invariant an
exact invariant.

Two steps procedure:

» Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie
transforms such that it is independent of gyromotion up to second
order

» Plug particle Lagrangian into Vlasov-Maxwell field theoretic action
and perform further reduction.

End product is gyrokinetic field theory embodied in Lagrangian.
Symmetries of Lagrangian yield exact conservation laws thanks to
Noether Theorem.
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Historical notes

v

Perturbative analysis of Vlasov:
» linear: Rutherford & Frieman 68, Taylor & Hastie 68, Catto 78
» non linear: Frieman & Chen 82.

Hamiltonian methods:

> electrostatic: Littlejohn 82, 83, Dubin 83
» Electromagnetic: Brizard, Lee, Hahm 88, Hahm 88

v

v

Gyrokinetic field theory:

» Lagrangian setting: Sugama 2000, Scott & Smirnov 2010
» Eulerian setting: Brizard 2000

Review:

» Brizard & Hahm 2007
» Krommes 2012, provides a non technical review of the topic.

v
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Motion of a particle in an electromagnetic field

» Consider given electromagnetic field defined by scalar potential ¢
and vector potential A such that

oA

E=———-V¢, B=VxA.

ot ¢
The non relativistic equations of motion of a particle in this
electromagnetic field is obtained from Lagrangian (here phase space
Lagrangian p - g — H in non canonical variables for later use)

1
Ls(x,v, %, t) = (mev + e;A) - X% — (Emsv2 + es0).

where p = mgv + esA(t,x), H = mgv?/2 + es¢(t,x) are canonical
momentum and hamiltonian.

42



Abstract geometric context W

» Lagrangian becomes Poincaré-Cartan 1-form
vy=p-dx— Hdt

with p = mev + esA(t,x), H = msv?/2 + esé(t, x).
» w = dr is the Lagrange 2-form, which is non degenerate and so a
symplectic form. lts components define the the Lagrange tensor 2.
» Then J = Q71 is the Poisson tensor which defines the Poisson
bracket
{F,G}=VFTJVG

» The equations of motion can then be expressed from the Poisson
matrix and the hamiltonian

dZ
T JVH.

» Lagrangian contains all necessary information and this structure is
preserved by change of coordintates.
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Derivation of gyrokinetic particle Lagrangian

>

Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell
particle Lagrangian by performing a change of variables, such that
lowest order terms independent of gyrophase.

This is obtained systematically order by order by the Lie transform
method (Dragt & Finn 1976, Cary 1981) on the Lagrangian

. . 1
LS(X,V,X, t) = (msV + esA) X2 — (Ems|v|2 + esd))‘

Not a unique solution.
1. v) formulation. Transform Lagrangian as is keeping fluctuation A in
symplectic form.
2. py formulation, pj = v; + (e/m)A|. Fluctuating A in hamiltonian.
3. u) formulation. Split fluctuating A into two parts. One of them goes
into Hamiltonian. Includes others as special case.
Gyrokinetic codes choose between v (symplectic) and pj
(hamiltonian) formulation.

Both involve severe numerical drawbacks.
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The mixed gyrokinetic particle Lagrangian W

> Split Ay = A + Afl. Define u = v| + (e/m)Af

» The gyrokinetic Lagrangian for a single particle always in the form

L=A"-X+pf—H

with A* = Ag + ((ms/es)uH + <Aﬁ>) b, b=B/B,
1
H = Ho+ Hi + Hz, Ho= EmsUﬁ +uB, Hi={(¢— U||Aﬁ>

where

(W) (x, 1) def % %w(x + p) da.

» Perpendicular component of fluctuating vector potential A
neglected.
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The Vlasov equation

» Consider a population of particles evolving with

dX dv e
» Their distribution function f, or more precisely probability density in

phase space (up to normalisation), satisfies the Vlasov equation

of
a%—v-vxf%—F-va:O.

» Given an initial distribution fy, the distribution at time t is
equivalently characterised by the solution of the Vlasov equation or
the particle positions f(t,z) = f,(X(0; z, t), V(0; z, t)),
where we denote by z = (x, v).
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Action principle for the Vlasov-Maxwell equations W

> Field theory is action principle from which Vlasov-Maxwell equations
are derived.

» Action proposed by Low (1958) with a Lagrangian formulation for
Vlasov, i.e. based on characteristics.

» Based on particle Lagrangian for species s, Ls.

» Such an action, splitting between particle and field Lagrangian,
using standard non canonical coordinates, reads:

S = Z/fs(207t0)Ls(x(ZOa to; t), X(zo, to; t), t) dzo dt
S

— —|“dxdt — — Al dxdt.
+ 5 /]V¢+ 8t| X o |V x AJ7 dx

Particle distribution functions £ taken at initial time.
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The electromagnetic gyrokinetic field theory W

» Gyrokinetics is a low frequency approximation.
Darwin approximation: 0;A removed from Lagrangian.

» Quasi-neutrality approximation: |V¢|? removed:
. 1
S = /fsz,t A*-X—Hdz—/Vx A;b)|? dx.
ES: (20, to)( ) dzo 2 [V x (Ab)|

» Additional approximation made to avoid fully implicit formulation:
Second order term in Lagrangian linearised (consistent with
ordering) by replacing full f by background fy

S= Z/fs(Zo, to)(A* . X — Hy — Hl)dZO

1
— Z/fM,S(ZO)Hz dzp — o™ / |V x (A||b)|2dx.
S IJ/O
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Derivation of the gyrokinetic equations from the ac- W
tion principle

We denote by B* = V x A* and B”
» Setting 25 57 =0 i=1,2,3,4 yields:

-b.

. ) 1 .
B*xR=—"Pb—-V(H+H), b-R=
q q

» Solving for R and PH we get the equations of motion of the
gyrocenters:
1 9(Ho + Hy) 1

: : 1
BiR=— B*—=V(Ho+H1)xb, BjPj = —=V(Ho+H)-B".
m op q m

» These are the characteristics of the gyrokinetic Vlasov equation

of . . Of
— +R-Vf+P— =0.
9t +R-Vf+ P o, 0
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Gyrokinetic Ampere and Poisson equations

>

The gyrokinetic Poisson (or rather quasi-neutrality) equation is
obtained by variations with respect to ¢

/e Srinsog 4. Vade— [anid)ax, v
kg T;

The gyrokinetic Ampére equation is obtained by variations with

respect to Aj:

[10gZ ns
/VLA” VLA|dx+Z/ ST (AR (Af) dx

/_j||< H> dX, VAﬁ
where A = A|| + AH and AH is related to ¢ by the constraint
i Vé-b=0.
ot
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Conserved quantities W

» Symmetries of Lagrangian yield invariants using Noether's theorem

» Time translation: Conservation of energy:

= dWod Vo, Hs — dV”
Z/ bdVofeo(zo)He — | kBT

+ /dva”y%
240

» Axisymmetry of background vector potential:
Conservation of total canonical angular momentum:

,Pg; = Z es/dWOdVOfs,O(ZO)A;LP
s
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Discretisation of the action W

» Our action principles rely on a Lagrangian (as opposed to Eulerian)
formulation of the Vlasov equation: the functionals on which our
action depends are the characteristics of the Vlasov equations X and
V in addition to the scalar and vector potentials ¢ and A.

> A natural discretisation relies on:

» A Monte-Carlo discretisation of the phase space at the initial time:
select randomly some initial positions of the particles.

» Approximate the continuous function spaces for ¢ and A by discrete
subspaces.

» Yields a discrete action where a finite (large) number of scalars are
varied: the particle phase space positions and coefficients in Finite
Element basis.

» When performing the variations, we get the classical Particle In Cell
Finite Element Method (PIC-FEM).
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FEEC needed for Maxwell's equations W

> In order to preserve the continuous structure at the discrete level,
the different unknowns ¢, A, E and B need to be chosen in
compatible Finite Element spaces.

» This is provided by Finite Element Exterior Calculus (FEEC)
introduced by Arnold, Falk and Winther.

» Continuous and discrete complexes are the following

grad curl div
HY(Q) — H(curl,Q) — H(div,Q) — L3(Q)
1Mo 41 L2 113
Vo — Vi — Vs — V3

» Faraday and div B = 0 verified strongly as

1
1E:—V°¢—8a?, 2B =V x A

» Ampere and Gauss’ law obtained from variations of FE coefficients.
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PIC Finite Element approximation of the Action W

» Compatible FE discretisation:
on € Vo, AnEp€ V1,Bpe Vo

» Particle discretisation of f ~ Y, wid(x — xx(t))0(v — vi(t))

» Vlasov-Maxwell action becomes:

N
Sn.h = ZWkLs( (zko0, toi t), Z(zk 0. to; t /|Za,(t )V XA} (x)|? dx
=1

2

N,
g dl
+;/ ’Z:;qbf(t)V/\o Z : dx.

> Z(z4 0, to; t) will be traditionally denoted by z,(t) is the phase space
position at time t of the particle that was at z, ¢ at time tp.
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PIC-FE discretisation of the action W

» We know have a discrete action depending on particle positions and
Finite Element degrees of freedom, which define the generalised
coordinates

SN,h[xla"‘7XN7).(17"‘7).(N7v17"‘7VN7¢17‘"7¢Ng7‘917"'7aNg]

» The discrete electric and magnetic fields are defined exactly as in
the continuous case from the discrete potentials thanks to the
compatible Finite Element spaces

O0Ap

_ A2 _
T Bh_Zb,/\,(x)—VxAh.

En=) el (x)=—Ve,—

> It immediately follows like in the continuous case the discrete

Faraday equation
0By,
—_— E,=0.
ot 4+ V x h 0
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Time advance via Hamiltonian splitting W

» Following the prescription of Crouseilles-Einkemmer-Faou a
Hamiltonian splitting can be performed, treating the three terms of
the Hamiltonian separately

1 1 1
H= §vl\/lpv + Eel\/lle + Ebl\/lgb = Hp, + He + Hp.
» Split and solve successively (2(u) Poisson matrix)
% =Q(u)VH;, i=p,eb
» Lie-Trotter splitting (first order), Strang splitting (second order) or
even higher order.

» Exact solution possible for H, and H,.

» For H, split further between the three components. Other
possibility: use variational integrator
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Comments and related work W

» Variational FE-PIC codes along with control variates for noise
reduction at the base of success of PIC simulations of Tokamak
turbulence with ORB5 family of codes.

NEMORB: AUG 26754 ( Pictu re: A. Botti no)

> A lot of recent effort towards variational or Hamiltonian
discretisation of Vlasov (or related)

> First ref: Lewis, Energy conserving numerical approximations of
Vlasov plasmas, JCP 1970

» Shadwick, Stamm, Estatiev, Variational formulation of macro-particle
plasma simulation algorithms (Phys Plasmas 2014)

» Squire, Qin, Tang, Geometric integration of the Vlasov-Maxwell
system with a variational particle-in-cell scheme, (Phys Plasmas 2012)
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Hierarchy of nonlinear Gyrokinetic Maxwell-Vlasov
models for verification of global GK codes

» European project VeriGyro:

» Most popular tools for plasma turbulence investigation
» Extended development over last 10 years
» Variety of implemented GK models

» Building up hierarchy of Gyrokinetic models implemented into the
codes:

» Systematic derivation from the Variational GK framework
» Verification of approximations consistency
» Identification of regimes of applicability

» Intercode Benchmark: implicit numerical schemes verification

» Hierarchy of numerical test cases: from adiabatic electrons towards
linear electromagnetic simulation.

» Participating codes: GENE/GKW (Eulerian); ORB5/EUTERPE
(PIC); GYSELA (Semi - Lagrangian)
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Linear electromagnetic benchmark

» Second order
TTG and KBM growth rates

Gyrokinetic theory for 16
. —®=gene
Particle-In-Cell code 14 ol o g |
ORB5 * 4105
1.2 1
» Intercode linear
electromagnetic '
Benchmark (ORB5 & 08
GENE) 06
» |dentification of 04
instabilities transitions: o
from ITG (low
frequencies) to KBM % o000z 0004 0006 0008 001 0012 0014

(high frequencies)
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Gyrokinetics: field-aligned semi-Lagrangian schemes W

Ultimate Goals
» Gyrokinetics: non-linear, electromagnetic, with multiple species
» Complex 3D geometries (Tokamaks and Stellarators)

» Global simulations (including magnetic axis and X point)

Opposing Requirements

» Efficiency: minimize number of
degrees of freedom

» Geometry: flexible and robust 3D
meshing, e.g. mapped multiblock
grids (see figure)
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Gyrokinetics: field-aligned semi-Lagrangian schemes W

Observation

» Linear instability modes have large parallel wavelengths (A > ry;)
» Turbulence structures also have small parallel gradients (V| < V)
Magnetic flux coordinates

» Allow for great reduction of grid points along one direction

» Shortcomings: singularities (magnetic axis, X-point), complex
meshing, inhomogenous grid spacing

Field-aligned approach

> Allows reduction of grid points along toroidal direction ¢

> Great mesh flexibility, uses interpolation on poloidal plane
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Gyrokinetics: field-aligned semi-Lagrangian schemes W

2
& ___+— Standard
o — B Interpolation
5] R e > centered
oo rectangular stencil
o— ' > requires fine mesh
0 2z in @
4
2 1 1 Field-Aligned
| ~— B Interpolation
0 _— g o > stencil adapts to
N  —— e magnetic field line
—% e
o— 4 ] > allows for coarser
0 - o mesh in ¢
¢
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Gyrokinetics: field-aligned semi-Lagrangian schemes

Progress in SelLalib
» ITG instability in screw-pinch geometry
» Uniform mesh in polar coordinates
> Verification: growth rates match analytics
» Figure: distribution function at ¢ =0,v =0

Geometry Equations
theta-pinch gyrokinetic (1 = 0) ions
Current . . .
Stat screw-pinch adiabatic electrons
are cylindrical Tokamak (in Gysela) | electrostatic limit
Next bumpy-pinch (straight stellar.) | fully gyrokinetic ions
Stex Tokamak (Asdex-U, ITER) gyrokinetic (1 = 0) electrons
eps

Stellarator (Wendelstein 7-X)

electromagnetic
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Vlasov equation in 6D W

Goal:
> Develop efficient semi-Lagrangian solver of Vlasov equation in 6D

» Study physical problems to verify /improve gyrokinetics

First test case: Simulation
of ITG in slab with periodic — simulated
boundary conditions growth rate
Verification: Comparison to
dispersion relation

» frequency: dispersion
w, =~ —0.01854,
simulated w, ~ —0.0185

L2 norm of potential

» growth rate: see figure
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Efficient parallelization strategies for 6D Vlasov W

Two approaches:

» Remap: Work with two domain partitions, one keeping the spatial coordinates
local and one keeping the velocity coordinates local ~~ transpose of data in
all-to-all communication.

» Domain decomposition (DD): Work with one domain partitioning which consists
of 6D subblocks of the total data ~~ neighbor-neighbor communication.

Results:
» Data exchange dominates.
» Lagrange interpolation better suited for DD than splines.

» DD allows for optimizations by exchange of data in 32-bit and
compression.
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6D Vlasov solver on sparse grids

Idea of sparse grids: Down-
sampling of full grid to reduce
the curse of dimensionality in
an optimal way for a given class : :
of functions. e e

from: Garcke, Sparse grid tutorial
Key features of the solver:

» Representation of the distribution function on tensor product of
sparse grids in x and v.

> Propagation with semi-Lagrangian method: Combine sparse-grid
interpolation with 1D spline interpolation.

» Multiplicative 0f-method: Only a (multiplicative) deviation from an
equilibrium state is represented on the sparse grid.
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6D Vlasov solver on sparse grids

0.1 \'\
Results: 7
0.01 ;
» Good compression can be & ooot V»
achieved if close to equilibrium 5 oo ' \mva\/‘\/\/ i
. . e S e0s
» Numerical instabilities can L {1
- - e-
OCcur |f prob|em IS SeVerer 16:07 SCXSEéggggigi:lgggﬁg gg:m:g
underresolved 1008 decay
0 5 10 15 20 25 30 35 40

time
Next steps:
> Improve parallelization stategy for 6D solver.

» Consider configurations with magnetic fields with sparse grid or
low-parametric tensor solver.
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Tensor train representation W

» Very efficient solver with optimal complexity (O(N) or O(N log, N))
has been developed for 6D Vlasov-Poisson equations.

» However 6D grid is huge: e.g. N = 64° ~ 70 x 10°.
> Idea: Use low-rank tensor representation

Q(X17"'7Xd) = Z Ql(Xlaal)Qz(ahXbOQ)-'-Qd(ad—hxd)

QY yeeny Qg1

to represent the data more efficiently.

» Semi-Lagrangian method developed within the Tensor Train
framework.

> Result: Data compression but more complex algorithms (QR and
SVD of the kernels to recompress data).
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Prototype MATLAB implementation

» Nonlinear Landau damping problem.
Computing time (wall clock time) and memory of a tensor
representation (TT) compared to the solution on the full grid (FG)
for 1146 iterations.

’ dim ‘ method ‘ # doubles for f  fraction | wall time  fraction ‘
2D FG 4096 1.5-10!
2D TT 2720 0.66 6.8 - 10° 0.45
4D FG 1.7 - 107 6.2 - 10
4D TT 5.5-10% 33-1073 | 6.0-102 9.7-10°3
6D TT 3.1-10° 45.107° | 2.7-10%

Next steps

» High-performance implementation based on efficient dense linear

algebra packages.

> Solution of Vlasov—Maxwell equations.
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Conclusions and perspectives W

» Applied math and HPC a strong need of magnetic fusion research
» Very complex models. Solid theory and verification strategy required.

» Gyrokinetic and kinetic simulations posed in 5D or 6D phase space
require a lot of resources and scale well with some effort.

> Verification and development based on modern software engineering
concepts needed.
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