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Controlled thermonuclear fusion

I Fusion conditions:
nT τE large enough.

I T ≈ 100 million oC
fully ionized gas=plasma.

I Magnetic confinement (ITER)
I Inertial confinement

I by laser (LMJ, NIF)
I by heavy ions
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The ITER project

International project involving European Union, China, India, Japan,
South Korea, Russia and United States aiming to prove that magnetic
fusion is viable source for energy.
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Two devices for magnetic fusion:
tokamaks and stellarators

Wendelstein 2-A,  
Deutsches Museum, München 

Wendelstein 7-X,  Greifswald 

Both confinement types at IPP: Tokamak and Stellarator 

Tokamak                                                    Stellarator 

ASDEX Upgrade, Garching 
Wendelstein 7-X,  Greifswald 
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Modelling of Tokamak plasmas

I A plasma is a collection of different species of charged particles.

I Basic model is Newton’s law with pairwise interaction between
particles which is largely dominated by electromagnetic force. Too
many particles n ≈ 1019m−3, numerically intractable.

I First reduced model: Kinetic Vlasov-Maxwell (+Landau collisions)

I Second reduced model: multi-fluid Euler-Maxwell

I Third reduced model: single fluid MHD

I Other reduced model: Maxwell’s equation with dielectric tensor
representing plasma
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Kinetic models: Turbulent transport

I Plasma not very collisional and far from fluid state
⇒ Kinetic description necessary for shorter time scales. Fluid and
kinetic simulations of turbulent transport yield very different results.

I Vlasov (6D phase space) coupled to 3D Maxwell

∂f

∂t
+ v · ∇x f +

q

m
(E + v × B) · ∇v f = 0.

I Toroidal geometry
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MHD: ELM

I In the tokamak large scale instabilities can appear in the plasma.
I The simulation of these instabilities is an important subject for

ITER.

I Example of Instabilities in the tokamak :
I Disruptions: Violent instabilities which can critically damage the Tokamak.
I Edge Localized Modes (ELM): Periodic edge instabilities which can damage the

Tokamak.

I These instabilities are linked to the very large gradient of pressure
and very large current at the edge.

I Many aspects of these instabilities are described by fluid models
(MHD resistive and diamagnetic or extended)
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Two-fluid model

I Computing the moments of the Vlasov equation we obtain the
following two fluid model

∂tns +∇x · (msnsus) = 0,

∂t(msnsus) +∇x · (msnsus ⊗ us) +∇xps +∇x ·Πs = σsE + Js × B,
∂t(msnsεs) +∇x · (msnsusεs + psus) +∇x ·

(
Πs · us + qs

)
= σsE · us ,

I coupled with Maxwell’s equations

1

c2
∂tE −∇× B = −µ0J ,

∂tB +∇× E = 0,

∇ · B = 0, ∇ · E =
σ

ε0
.

I ns =
∫
R3 fsdv the particle number , msnsus =

∫
R3 msvfsdv the

momentum, εs the total energy and ρs = msns the density.

I Isotropic pressures are ps , stress tensors Πs and heat fluxes qs .

10



MHD: assumptions and generalized Ohm’s law

I quasi neutrality assumption: ni = ne =⇒ ρ ≈ mini + O(me
mi

),
u ≈ u i + O(me

mi
)

I Magneto-static assumption : ∇× B = µ0J + O(V0
c ).

I We define ρ = ρi + ρe and u = ρiu i+ρeue

ρ .
I Consequence of the quasi-neutrality:

ue = u − mi

eρ
J + O

(
me

mi

)
I Summing the mass and moment equation for the two species we

obtain:
∂tρ+∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = J × B−∇ ·Π + O

(
me

mi

)
I For the pressure equation, we replace the electronic velocity by full

velocity using the previous relation.
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Extended MHD: model

∂tρ+∇ · (ρu) = 0,

ρ∂tu + ρu · ∇u +∇p = J × B−∇ ·Π,

1

γ − 1
∂tpi +

1

γ − 1
u · ∇pi +

γ

γ − 1
pi∇ · u +∇ · qi = −Πi : ∇u,

1

γ − 1
∂tpe +

1

γ − 1
u · ∇pe +

γ

γ − 1
pe∇ · u +∇ · qe =

1

γ − 1

mi

eρ
J ·

(
∇pe − γpe

∇ρ
ρ

)
−Πe : ∇u + Πe : ∇

(
mi
eρ

J
)

+ η|J|2,

∂tB = −∇×
(
−u × B + ηJ−

mi

ρe
∇ ·Πe −

mi

ρe
∇pe +

mi

ρe
(J × B)

)
,

∇ · B = 0, ∇× B = J.

I Remark: We can write easily the equation on the total pressure pe + pi . Possible
simplification pe = p/2.

I In Black: ideal MHD. In Black and blue: Viscous-resistive MHD. All the terms:
Extended MHD.
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Microwave beams in plasmas

I RF waves are typically used in magnetic fusion plasmas for
I Heating: wave energy is transferred to particle motion exploiting the

wave-particle resonances in a plasma, selectively heating electrons or
ions

I Current drive: transfer momentum to plasma in order to induce
toroidal current to generate poloidal confinement field.

I Diagnostics: temperature and density of a plasma can be determined
by probing the plasma with RF waves

I Standard computations are based on short-wavelength asymptotics
(ray tracing, beam tracing, ...).

I Such methods fail in some cases. So called full-wave solvers are then
the model of choice.
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Full-wave solvers

I Full-wave means Direct numerical solution of Maxwell’s equations
(including the “full” range of wavelengths).

I Popular approach: Finite Difference Time Domain (Yee’s scheme)
augmented with one equation for the induced current density J,

∂tE − c∇× B + ωpF = 0,

∂tB + c∇× E = 0,

∂tF − ωpE − ωc × F + νF = 0,

F = 4πJ/ωp.

(For ν = 0, this is a symmetric hyperbolic system; conserved
energy.)

I Does not correctly take into account real geometry.

I New full wave solver based on structure preserving finite elements
(FEEC: Arnold-Falk-Winther) under development.
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Applications: Beam scattering by turbulence

I Turbulence at the edge of the plasma produces density blobs.
I Time-scale separation: We can consider blobs frozen in time.
I Each blob acts as a defocusing lens that can even split the beam:

A wave beam injected from
the left boundary into a
smooth density profile.

The same beam in presence
of two density blobs.

I Standard beam tracing techniques do not apply for such beams.
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Applications: Reflectometry diagnostics

I Wave beams are reflected back when the electron density is
sufficiently large (cut-off).

I From the phase shift of the reflected beam one obtains information
on, e.g., the density profile.

I A fold caustic near the cut-off limits the applicability of ray and
beam tracing methods:

refracted beam
(beam tracing applies)

reflected beam
(full-wave required)
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HPC resources

I European Fusion community organised within the EUROfusion
consortium supported by EU

I Next to experimental devices HPC plays an important role:
dedicated resources

I HPC-FF (Germany): 2009-2013, 100 Tflops, 1080 nodes, 8-core
Intel-Nehalem, 8640 cores. Part of JUROPA cluster at Jülich.

I HELIOS (Japan): 2012-2016, 1.5 Petaflops, 4500 nodes, 16-core Intel
SandyBridge, 72000 cores. Fully dedicated to fusion: 50% for Europe,
50% for Japan.

I New machine in Italy available at end of this year. Will be part of
bigger cluster at CINECA.
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The High Level Support Team

I Main tasks for HLST
The HLST team is a support unit to ensure optimal exploitation of
dedicated resources since 2009: HPC-FF, HELIOS, ...

I it is not focused on its own academic research.
I Support for code development

I Parallelise codes using e.g. OpenMP and/or MPI standards for
massively parallel computers

I Improve the performance of existing parallel codes both at the single
node and inter node levels

I Support the transfer of codes to new multiprocessors architectures
I Choose and if necessary adapt algorithms and/or mathematical library

routines to improve applications for the targeted computer
architectures
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The NMPP division at IPP

I Numerical Methods in Plasma Physics division at Max-Planck
Institute for Plasma Physics

I Develop robust, verified and well-documented codes for plasma
physics and magnetic fusion.

I From mathematical modeling to High Performance Computing

I Models derived rigorously from first principles via asymptotic
reduction: kinetic, gyrokinetic, fluid, MHD, ....

I Emphasis on well-posedness, energy principle, mathematical
structure: basis for verification tests

I Discretisation adapted to features of model: Structure preserving
discretisation

I Single core efficiency and parallel scaling important issues.
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NMPP code suite

I Well written, tested and documented codes in Fortran 2003

I Can be used for testing new numerical concepts, learning, or as
libraries for productions codes. Release versions expected this year.

I Collaborative development under Gitlab at MPCDF
I Major codes:

I SeLaLib: Kinetic and gyrokinetic, Semi-Lagrangian and PIC (with
Inria, U. Strasbourg, CNRS, CEA)

I Django-Jorek: Finite Element code aimed at MHD (with Inria)
I Spiga: Finite Element code based on Isogeometric analysis for

Maxwell: coupled with particle tracker as a Full Orbit code, Full
Wave code in frequency domain under development

I FEMilaro: Finite Element code for fluid models (SOLPS)
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The JOREK code

I Models: reduced MHD models (reduction of
the solution space) using potential formulation
of the fields.

I Physics in models: two fluid and neoclassical
effect, coupling with neutral ...

I Typical run of JOREK:
I Computation of the equilibrium on a grid

aligned to the magnetic surfaces.

I Computation of the MHD instabilities
perturbing the axisymmetric equilibrium.

Figure: Aligned grid
Numerical methods

I Spatial Discretization: 2D Cubic Bezier finite elements + Fourier
expansion.

I Temporal discretization: Implicit scheme + Gmres + Toroidal
modes Block Jacobi preconditioning
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New paths explored for MHD simulations

I JOREK code
I Verification and non regression tests
I Scaling issue with present algorithm:

I Preconditioner for linear system not efficient for strongly non linear
problems

I New preconditioner with better properties has been derived and just
being tested

I Matrix free implementation, where jacobian matrix not explicitly
computed, possible. This will overcome the memory limitations.

I Simplified and modular version of numerical core of JOREK being
developed for faster testing and evaluation of numerical algorithms.

I Evaluation of DG code FLEXI from Stuttgart for fusion applications.
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Verification of the JOREK model

I The JOREK code implements different variants of reduced resistive
MHD. Stability issues observed in some situations.

I A well posed model needs to enforce conservation or dissipation of
total energy.

I Original model slightly modified so that the following energy
theorem could be proved:

d

dt

∫
Ω

(
|B|2

2
+ ρ
|v|2

2
+

1

γ − 1
p

)
= −

∫
Ω
η(T )

|4∗ψ|2

R2
−
∫

Ω
ν|4⊥u|2

with E = |B|2
2 + ρ |v|

2

2 + 1
γ−1p the total energy,

v = −R∇u × eφ + v||B and ψ the poloidal magnetic flux.

I Modified model has been implemented and indeed remains stable in
situations where the original model is not.
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Physics Based Preconditioner

I Present JOREK preconditioner based on direct solver for each
Fourier mode

I Exact for linear problems, but very inefficient in nonlinear case.

I Stiff problem due to hyperbolic structure with very different wave
speeds

I Rewrite the hyperbolic system as a second order equation
(well-conditioned): parabolization (L. Chacon).

I First tests on simpler problem exhibiting similar features.

I can be extended to the nonlinear hyperbolic system as MHD (and
resistive MHD with additional splitting steps).
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Damped waves problem

I We consider the damped wave problem

∂p

∂t
+

1

ε
∇ · u = 0

∂u

∂t
+

1

ε
∇p = − σ

ε2
u

with σ opacity, c light speed and ε ≈ 1
c ≈

1
σ

I When ε −→ 0 the model can be approximated by
∂tp −∇ · ( 1

σ∇p) = 0.

I This problem is stiff in time. CFL condition is ∆t ≤ C1εh + C2ε
2.

⇒ Use implicit scheme but the model is ill-conditioned
I Two reasons for the ill-conditioning:

1. the stiff terms (which depend of ε)
2. the hyperbolic structure.
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Results with classical Solvers/Preconditioners

I Comparison between GMRES method with different preconditioning
I Jac (Jacobi), ILU (Incomplete LU), MG (Multigrid), SOR.
I Physics Based (PB)
I ε1 = 10−5 and ε2 = 10−10.

Mesh / solvers Jac ILU(0) ILU(4) MG(2) SOR PB

4× 4, ε1
cv 3 3 3 3 3 3
iter 27 11 1 38 8 1
time 7.2 E-4 1.3E-3 7.7E-3 1.5E-2 1.4E-3 2.1E-3

4× 4, ε2
cv 3 3 3 7 3 3
iter 2.1E+4 11 1 - 8 1
time 3.6E-1 1.3E-3 7.7E-3 - 1.5E-3 2.1E-3

16× 16, ε1
cv 3 3 3 7 3 3
iter 1.5E+4 18 9 140 20 1
time 5.0E-0 2.3E-2 4.0E-1 5.0E-1 5.0E-2 2.1E-2

16× 16, ε2
cv 7 3 3 7 3 3
iter - 18 9 - 20 1
time - 2.3E-2 4.0E-1 - 5.0E-2 2.1E-2

64× 64, ε2
cv 7 7 3 7 7 7
iter - - 632 - - 1
time - - 2.0E+1 - - 4.2E-1
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Results with the new Preconditioners
I Comparison between GMRES method with different Finite Elements.

HB: Cubic Hermite-Bézier, BS(p) splines of degree p at t = dt and
hdt = cst

Mesh HB BS(3) BS(4) BS(5)

16× 16
cv 3 3 3 3
iter 3 2 1 1
error 2.4E-11 7.7E-16 3.6E-11 1.5E-13
time 0.38 4.14E-2 1.62E-2 2.1E-2

32× 32
cv 3 3 3 3
iter 6 2 1 1
error 3.8E-13 5.8E-14 1.4E-13 5.2E-15
time 14.08 0.18 5.5E-2 7.28E-2

64× 64
cv 3 3 3 3
iter 16 1 1 1
error 4.3E-11 2.3E-12 8.8E-14 1.1E-13
time 461.1 0.15 0.24 0.44

I The convergence tolerance is 10−10 and iter max=100’000.

I The Preconditioner-solver tolerance is 10−7 for convergence and
iter max=1’000.
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Comments on new preconditionner

I The good results for B-Splines (with maximum regularity) can be
explained by the spectral properties of B-Splines discretized matrices,

I The global time can be improved by deriving appropriate
preconditioners or solvers for the subsystems.

I The Generally Locally Toeplitz theory is a very good framework to
study and improve the efficiency of a preconditioner

I H(div,Ω) and H(curl,Ω) elliptic variational problems (needed for
Maxwell, Stokes and some Physics-based subsystems)

I Fast MultiGrid solver for elliptic problems (does not depend on the
degree, nor the domain dimension)
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Exploring alternatives for JOREK’s fully implicit Fi-
nite Elements: the FLEXI DG-SEM code

I FLEXI: Highly scalable explicit 3D DG-SEM solver, high order,
unstructured hex-meshes for general conservation laws

I Resistive full MHD & anisotropic diffusion implemented and
validated

I Difficulties: Find semi-implicit time integration maintaining
scalability of the solver!

I Initialization: domain geometry, mesh and MHD equilibrium needed

I Objectives:

I Assess DG versus JOREK’s FE for different fusion applications

I Explore benefits of non conforming locally field aligned mesh which
is easier to handle with DG, including in the vicinity of the
separatrix.
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Discontinuous Galerkin Method

I From high order Finite Element Method (p-FEM):
Approximation solution is a polynomial inside an element

I From Finite Volume (FV):
Riemann solvers to resolve discontinuity at element interfaces

⇒ High order scheme, low dissipation and dispersion errors
⇒ Allows coarse unstructured meshes for complex geometries
⇒ High potential for parallel scaling due to element local operators
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Strong Scaling of FLEXI
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N = 5 & different mesh sizes N = 3/5/8 on same mesh

I Strong scaling on Cray XE6, HLRS Stuttgart
I Always up to one element per core
I Number of cores is doubled in each step
I Speedup > 100% owing to cache effects (low memory consumption)
⇒ Ideal strong scaling for ≈ 1000 DOF per core, corresponding to

one N8-elem., four N5-elem. or eight N3-elem. per core
33



High order meshes

I Block-structured meshes of cylinder (avoid singularity)

I High order polynomial element mappings

I Cylindrical mesh ⇒ mapped to torus
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High order meshes

I Mapping approach allows for field alignment in toroidal direction
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High order meshes

I Interface to VMEC:
Allows to map Tokamak and Stellarator configurations:

⇒ get mesh geometry & MHD equilibrium 1

1VMEC input provided by C. Nuehrenberg, Greifswald
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2D MHD Simulation of a Current Hole Instability

initial current profile

β=1⋅ 10-3, η=1⋅ 10-5 (512 N3-elems)

K
in

et
ic

 E
n

er
gy

10−13

10−12

10−9

10−8

10−7

10−6

τalfven

0 104 2×104 3×104 4×104

γ∼1.3e-03

kinetic energy growth

I Cylindrical domain, 512 N3 elements , setup: Czarny and Huysmans2

I MHD equilibrium from radial current profile
⇒ Growth rate and solution compares well with reference

2O. Czarny,G. Huymans,Bezier surfaces and FE for MHD simulations, JCP 226, 2008
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2D MHD Simulation of a Current Hole Instability

current profile at peak kin. energy

β=1⋅ 10-3, η=1⋅ 10-5 (512 N3-elems)
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I Cylindrical domain, 512 N3 elements , setup: Czarny and Huysmans2
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Anisotropic diffusion in z-pinch field

I Diffusion of a blob in Z-pinch magnetic field
I Parallel diff. χ‖ = 1, perpendicular diff. χ⊥ = 0
I Periodic cylindrical domain, 1800 N5 elements

⇒ Field aligned & same accuracy: factor 8 fewer elements!
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Numerical issues with 6D Vlasov-Maxwell

I Posed in 6D phase space! Dimension reduction if possible would
help.

I Large magnetic field imposes very small time step to resolve the
rotation of particles along field lines.

I Physics of interest is low frequency. Remove light waves: Darwin
instead of Maxwell.

I Debye length small compared to ion Larmor radius. Quasi-neutrality
assumption ne = ni needs to be imposed instead of Poisson
equation for electric field.
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Towards a reduced model

I Scale separation: fast motion around magnetic field lines can be
averaged out.

I Idea: separate motion of the guiding centre from rotation by a
change of coordinates.

I For constant magnetic field can be done by change of
coordinates: X = x− ρL guiding centre + kind of
cylindrical coordinates in v: v‖, µ = 1

2mv2
⊥/ωc , θ.

I Mixes position and velocity variables.

I Perturbative model for slowly varying magnetic field.
I Several small parameters

I gyroperiod, Debye length
I Magnetic field in tokamak varies slowly: εB = |∇B/B|
I Time dependent fluctuating fields are small.

39



Geometric asymptotic reduction

I Long time magnetic confinement of charged particles depends on
existence of first adiabatic invariant (Northrop 1963):
µ = 1

2mv2
⊥/ωc .

I Geometric reduction based on making this adiabatic invariant an
exact invariant.

I Two steps procedure:
I Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie

transforms such that it is independent of gyromotion up to second
order

I Plug particle Lagrangian into Vlasov-Maxwell field theoretic action
and perform further reduction.

I End product is gyrokinetic field theory embodied in Lagrangian.
Symmetries of Lagrangian yield exact conservation laws thanks to
Noether Theorem.
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Historical notes

I Perturbative analysis of Vlasov:
I linear: Rutherford & Frieman 68, Taylor & Hastie 68, Catto 78
I non linear: Frieman & Chen 82.

I Hamiltonian methods:
I electrostatic: Littlejohn 82, 83, Dubin 83
I Electromagnetic: Brizard, Lee, Hahm 88, Hahm 88

I Gyrokinetic field theory:
I Lagrangian setting: Sugama 2000, Scott & Smirnov 2010
I Eulerian setting: Brizard 2000

I Review:
I Brizard & Hahm 2007
I Krommes 2012, provides a non technical review of the topic.
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Motion of a particle in an electromagnetic field

I Consider given electromagnetic field defined by scalar potential φ
and vector potential A such that

E = −∂A

∂t
−∇φ, B = ∇× A.

I The non relativistic equations of motion of a particle in this
electromagnetic field is obtained from Lagrangian (here phase space
Lagrangian p · q̇− H in non canonical variables for later use)

Ls(x, v, ẋ, t) = (msv + esA) · ẋ2 − (
1

2
msv

2 + esφ).

where p = msv + esA(t, x), H = msv
2/2 + esφ(t, x) are canonical

momentum and hamiltonian.
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Abstract geometric context

I Lagrangian becomes Poincaré-Cartan 1-form

γ = p · dx− H dt

with p = msv + esA(t, x), H = msv
2/2 + esφ(t, x).

I ω = dγ is the Lagrange 2-form, which is non degenerate and so a
symplectic form. Its components define the the Lagrange tensor Ω.

I Then J = Ω−1 is the Poisson tensor which defines the Poisson
bracket

{F ,G} = ∇FT J∇G
I The equations of motion can then be expressed from the Poisson

matrix and the hamiltonian

dZ

dt
= J∇H.

I Lagrangian contains all necessary information and this structure is
preserved by change of coordintates.
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Derivation of gyrokinetic particle Lagrangian

I Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell
particle Lagrangian by performing a change of variables, such that
lowest order terms independent of gyrophase.

I This is obtained systematically order by order by the Lie transform
method (Dragt & Finn 1976, Cary 1981) on the Lagrangian

Ls(x, v, ẋ, t) = (msv + esA) · ẋ2 − (
1

2
ms |v|2 + esφ).

I Not a unique solution.
1. v‖ formulation. Transform Lagrangian as is keeping fluctuation A in

symplectic form.
2. p‖ formulation, p‖ = v‖ + (e/m)A‖. Fluctuating A‖ in hamiltonian.
3. u‖ formulation. Split fluctuating A‖ into two parts. One of them goes

into Hamiltonian. Includes others as special case.

I Gyrokinetic codes choose between v‖ (symplectic) and p‖
(hamiltonian) formulation.

I Both involve severe numerical drawbacks.
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The mixed gyrokinetic particle Lagrangian

I Split A‖ = As
‖ + Ah

‖. Define u‖ = v‖ + (e/m)Ah
‖

I The gyrokinetic Lagrangian for a single particle always in the form

L = A∗ · Ẋ + µθ̇ − H

with A∗ = A0 +
(

(ms/es)u‖ + 〈As
‖〉
)

b, b = B/B,

H = H0 + H1 + H2, H0 =
1

2
msu

2
‖ + µB, H1 = 〈φ− u‖A

h
‖〉

where

〈ψ〉(x, µ)
def
=

1

2π

∮
ψ(x + ρ) dα.

I Perpendicular component of fluctuating vector potential A
neglected.
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The Vlasov equation

I Consider a population of particles evolving with

dX

dt
= V,

dV

dt
= F =

e

m
(E + V × B).

I Their distribution function f , or more precisely probability density in
phase space (up to normalisation), satisfies the Vlasov equation

∂f

∂t
+ v · ∇x f + F · ∇v f = 0.

I Given an initial distribution f0, the distribution at time t is
equivalently characterised by the solution of the Vlasov equation or
the particle positions f (t, z) = f0(X (0; z, t),V (0; z, t)),
where we denote by z = (x, v).
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Action principle for the Vlasov-Maxwell equations

I Field theory is action principle from which Vlasov-Maxwell equations
are derived.

I Action proposed by Low (1958) with a Lagrangian formulation for
Vlasov, i.e. based on characteristics.

I Based on particle Lagrangian for species s, Ls .

I Such an action, splitting between particle and field Lagrangian,
using standard non canonical coordinates, reads:

S =
∑
s

∫
fs(z0, t0)Ls(X(z0, t0; t), Ẋ(z0, t0; t), t) dz0 dt

+
ε0

2

∫
|∇φ+

∂A

∂t
|2 dx dt − 1

2µ0

∫
|∇ × A|2 dxdt.

Particle distribution functions fs taken at initial time.
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The electromagnetic gyrokinetic field theory

I Gyrokinetics is a low frequency approximation.
Darwin approximation: ∂tA removed from Lagrangian.

I Quasi-neutrality approximation: |∇φ|2 removed:

S =
∑
s

∫
fs(z0, t0)(A∗ · Ẋ− H) dz0 −

1

2µ0

∫
|∇ × (A‖b)|2 dx.

I Additional approximation made to avoid fully implicit formulation:
Second order term in Lagrangian linearised (consistent with
ordering) by replacing full f by background fM

S =
∑
s

∫
fs(z0, t0)(A∗ · Ẋ− H0 − H1)dz0

−
∑
s

∫
fM,s(z0)H2 dz0 −

1

2µ0

∫
|∇ × (A‖b)|2 dx.
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Derivation of the gyrokinetic equations from the ac-
tion principle

We denote by B∗ = ∇× A∗ and B∗‖ = B∗ · b.

I Setting δS
δZi

= 0, i = 1, 2, 3, 4 yields:

B∗ × Ṙ = −m

q
Ṗ‖b−

1

q
∇(H0 + H1), b · Ṙ =

1

m

∂(H0 + H1)

∂p‖
.

I Solving for Ṙ and Ṗ‖ we get the equations of motion of the
gyrocenters:

B∗‖ Ṙ =
1

m

∂(H0 + H1)

∂p‖
B∗−1

q
∇(H0+H1)×b, B∗‖ Ṗ‖ = − 1

m
∇(H0+H1)·B∗.

I These are the characteristics of the gyrokinetic Vlasov equation

∂f

∂t
+ Ṙ · ∇f + Ṗ‖

∂f

∂p‖
= 0.
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Gyrokinetic Ampere and Poisson equations

I The gyrokinetic Poisson (or rather quasi-neutrality) equation is
obtained by variations with respect to φ∫

e2
i ρ

2
i ns,0

kBTi
∇⊥φ · ∇φ̃ dx =

∫
qn〈φ̃〉dx, ∀φ̃

I The gyrokinetic Ampère equation is obtained by variations with
respect to A‖:∫

∇⊥A‖ · ∇⊥Ãh
‖ dx +

∑
s

∫
µ0q

2
s ns

ms
〈Ah
‖〉〈Ãh

‖〉dx

= µ0

∫
j‖〈Ãh

‖〉dx, ∀Ãh
‖

I where A‖ = As
‖ + Ah

‖ and As
‖ is related to φ by the constraint

∂As
‖

∂t
+∇φ · b = 0.
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Conserved quantities

I Symmetries of Lagrangian yield invariants using Noether’s theorem

I Time translation: Conservation of energy:

E(t) =
∑
s

∫
dW0dV0fs,0(z0)Hs −

∫
dV

e2
i ρ

2
i ns,0

kBTi
|∇φ|2

+
1

2µ0

∫
dV |∇⊥A‖|2.

I Axisymmetry of background vector potential:
Conservation of total canonical angular momentum:

Pϕ =
∑
s

es

∫
dW0dV0fs,0(z0)A?

s,ϕ
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Discretisation of the action

I Our action principles rely on a Lagrangian (as opposed to Eulerian)
formulation of the Vlasov equation: the functionals on which our
action depends are the characteristics of the Vlasov equations X and
V in addition to the scalar and vector potentials φ and A.

I A natural discretisation relies on:
I A Monte-Carlo discretisation of the phase space at the initial time:

select randomly some initial positions of the particles.
I Approximate the continuous function spaces for φ and A by discrete

subspaces.
I Yields a discrete action where a finite (large) number of scalars are

varied: the particle phase space positions and coefficients in Finite
Element basis.

I When performing the variations, we get the classical Particle In Cell
Finite Element Method (PIC-FEM).
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FEEC needed for Maxwell’s equations

I In order to preserve the continuous structure at the discrete level,
the different unknowns φ, A, E and B need to be chosen in
compatible Finite Element spaces.

I This is provided by Finite Element Exterior Calculus (FEEC)
introduced by Arnold, Falk and Winther.

I Continuous and discrete complexes are the following

grad curl div
H1(Ω) −→ H(curl,Ω) −→ H(div,Ω) −→ L2(Ω)
↓ Π0 ↓ Π1 ↓ Π2 ↓ Π3

V0 −→ V1 −→ V2 −→ V3

I Faraday and divB = 0 verified strongly as

1E = −∇ 0φ− ∂ 1A

∂t
, 2B = ∇× 1A.

I Ampere and Gauss’ law obtained from variations of FE coefficients.
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PIC Finite Element approximation of the Action

I Compatible FE discretisation:

φh ∈ V0, Ah,Eh ∈ V1,Bh ∈ V2.

I Particle discretisation of f ≈
∑

k wkδ(x − xk(t))δ(v − vk(t))

I Vlasov-Maxwell action becomes:

SN,h =
N∑

k=1

wkLs(Z(zk,0, t0; t), Ż(zk,0, t0; t), t)−1

2

∫
|
Ng∑
i=1

ai (t)∇×Λ1
i (x)|2 dx

+
1

2

∫ ∣∣∣∣∣∣
Ng∑
i=1

φi (t)∇Λ0
i (x) +

Ng∑
i=1

dai (t)

dt
Λ1
i (x)

∣∣∣∣∣∣
2

dx.

I Z(zk,0, t0; t) will be traditionally denoted by zk(t) is the phase space
position at time t of the particle that was at zk,0 at time t0.
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PIC-FE discretisation of the action

I We know have a discrete action depending on particle positions and
Finite Element degrees of freedom, which define the generalised
coordinates

SN,h[x1, . . . , xN , ẋ1, . . . , ẋN , v1, . . . , vN , φ1, . . . , φNg , a1, . . . , aNg ]

I The discrete electric and magnetic fields are defined exactly as in
the continuous case from the discrete potentials thanks to the
compatible Finite Element spaces

Eh =
∑
i

eiΛ
1
i (x) = −∇φh −

∂Ah

∂t
, Bh =

∑
biΛ

2
i (x) = ∇× Ah.

I It immediately follows like in the continuous case the discrete
Faraday equation

∂Bh

∂t
+∇× Eh = 0.
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Time advance via Hamiltonian splitting

I Following the prescription of Crouseilles-Einkemmer-Faou a
Hamiltonian splitting can be performed, treating the three terms of
the Hamiltonian separately

H =
1

2
vMpv +

1

2
eM1e +

1

2
bM2b = Hp + He + Hb.

I Split and solve successively (Ω(u) Poisson matrix)

du

dt
= Ω(u)∇Hi , i = p, e, b

I Lie-Trotter splitting (first order), Strang splitting (second order) or
even higher order.

I Exact solution possible for He and Hb.

I For Hp split further between the three components. Other
possibility: use variational integrator
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Comments and related work

I Variational FE-PIC codes along with control variates for noise
reduction at the base of success of PIC simulations of Tokamak
turbulence with ORB5 family of codes.

A. Bottino, NumKin 2013, 5/09/2013 

Turbulence, perpendicular vs. parallel  

(Picture: A. Bottino)
I A lot of recent effort towards variational or Hamiltonian

discretisation of Vlasov (or related)
I First ref: Lewis, Energy conserving numerical approximations of

Vlasov plasmas, JCP 1970
I Shadwick, Stamm, Estatiev, Variational formulation of macro-particle

plasma simulation algorithms (Phys Plasmas 2014)
I Squire, Qin, Tang, Geometric integration of the Vlasov-Maxwell

system with a variational particle-in-cell scheme, (Phys Plasmas 2012)
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Hierarchy of nonlinear Gyrokinetic Maxwell-Vlasov
models for verification of global GK codes

I European project VeriGyro:
I Most popular tools for plasma turbulence investigation
I Extended development over last 10 years
I Variety of implemented GK models

I Building up hierarchy of Gyrokinetic models implemented into the
codes:

I Systematic derivation from the Variational GK framework
I Verification of approximations consistency
I Identification of regimes of applicability

I Intercode Benchmark: implicit numerical schemes verification
I Hierarchy of numerical test cases: from adiabatic electrons towards

linear electromagnetic simulation.
I Participating codes: GENE/GKW (Eulerian); ORB5/EUTERPE

(PIC); GYSELA (Semi - Lagrangian)
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Linear electromagnetic benchmark

I Second order
Gyrokinetic theory for
Particle-In-Cell code
ORB5

I Intercode linear
electromagnetic
Benchmark (ORB5 &
GENE)

I Identification of
instabilities transitions:
from ITG (low
frequencies) to KBM
(high frequencies)
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Gyrokinetics: field-aligned semi-Lagrangian schemes

Ultimate Goals

I Gyrokinetics: non-linear, electromagnetic, with multiple species

I Complex 3D geometries (Tokamaks and Stellarators)

I Global simulations (including magnetic axis and X point)

Opposing Requirements

I Efficiency: minimize number of
degrees of freedom

I Geometry: flexible and robust 3D
meshing, e.g. mapped multiblock
grids (see figure)
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Gyrokinetics: field-aligned semi-Lagrangian schemes

Observation

I Linear instability modes have large parallel wavelengths (λ‖ � rLi )

I Turbulence structures also have small parallel gradients (∇‖ � ∇⊥)

Magnetic flux coordinates

I Allow for great reduction of grid points along one direction

I Shortcomings: singularities (magnetic axis, X-point), complex
meshing, inhomogenous grid spacing

Field-aligned approach

I Allows reduction of grid points along toroidal direction ϕ

I Great mesh flexibility, uses interpolation on poloidal plane
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Gyrokinetics: field-aligned semi-Lagrangian schemes

θ

φ 2!0

2!

0

B
Standard
Interpolation
I centered

rectangular stencil

I requires fine mesh
in ϕ

θ

φ 2!0

2!

0

B
Field-Aligned
Interpolation
I stencil adapts to

magnetic field line

I allows for coarser
mesh in ϕ

62



Gyrokinetics: field-aligned semi-Lagrangian schemes

Progress in SeLaLib
I ITG instability in screw-pinch geometry

I Uniform mesh in polar coordinates

I Verification: growth rates match analytics

I Figure: distribution function at ϕ = 0, v‖ = 0

Geometry Equations

Current
State

theta-pinch
screw-pinch
cylindrical Tokamak (in Gysela)

gyrokinetic (µ = 0) ions
adiabatic electrons
electrostatic limit

Next
Steps

bumpy-pinch (straight stellar.)
Tokamak (Asdex-U, ITER)
Stellarator (Wendelstein 7-X)

fully gyrokinetic ions
gyrokinetic (µ = 0) electrons
electromagnetic
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Vlasov equation in 6D

Goal:

I Develop efficient semi-Lagrangian solver of Vlasov equation in 6D

I Study physical problems to verify/improve gyrokinetics

First test case: Simulation
of ITG in slab with periodic
boundary conditions
Verification: Comparison to
dispersion relation

I frequency: dispersion
ωr ≈ −0.01854,
simulated ωr ≈ −0.0185

I growth rate: see figure
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Efficient parallelization strategies for 6D Vlasov

Two approaches:
I Remap: Work with two domain partitions, one keeping the spatial coordinates

local and one keeping the velocity coordinates local  transpose of data in
all-to-all communication.

I Domain decomposition (DD): Work with one domain partitioning which consists
of 6D subblocks of the total data  neighbor-neighbor communication.

Results:

I Data exchange dominates.

I Lagrange interpolation better suited for DD than splines.

I DD allows for optimizations by exchange of data in 32-bit and
compression.
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6D Vlasov solver on sparse grids

Idea of sparse grids: Down-
sampling of full grid to reduce
the curse of dimensionality in
an optimal way for a given class
of functions.

from: Garcke, Sparse grid tutorial
Key features of the solver:

I Representation of the distribution function on tensor product of
sparse grids in x and v .

I Propagation with semi-Lagrangian method: Combine sparse-grid
interpolation with 1D spline interpolation.

I Multiplicative δf -method: Only a (multiplicative) deviation from an
equilibrium state is represented on the sparse grid.
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6D Vlasov solver on sparse grids

Results:

I Good compression can be
achieved if close to equilibrium

I Numerical instabilities can
occur if problem is severely
underresolved  1e-08
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Example for Landau damping

Next steps:

I Improve parallelization stategy for 6D solver.

I Consider configurations with magnetic fields with sparse grid or
low-parametric tensor solver.
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Tensor train representation

I Very efficient solver with optimal complexity (O(N) or O(N log2 N))
has been developed for 6D Vlasov-Poisson equations.

I However 6D grid is huge: e.g. N = 646 ≈ 70× 109.
I Idea: Use low-rank tensor representation

Q(x1, . . . , xd) =
∑

α1,...,αd−1

Q1(x1, α1)Q2(α1, x2, α2) . . .Qd(αd−1, xd)

to represent the data more efficiently.

I Semi-Lagrangian method developed within the Tensor Train
framework.

I Result: Data compression but more complex algorithms (QR and
SVD of the kernels to recompress data).
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Prototype MATLAB implementation

I Nonlinear Landau damping problem.
Computing time (wall clock time) and memory of a tensor
representation (TT) compared to the solution on the full grid (FG)
for 1146 iterations.

dim method # doubles for f fraction wall time fraction

2D FG 4096 1.5 · 101

2D TT 2720 0.66 6.8 · 100 0.45

4D FG 1.7 · 107 6.2 · 104

4D TT 5.5 · 104 3.3 · 10−3 6.0 · 102 9.7 · 10−3

6D TT 3.1 · 106 4.5 · 10−5 2.7 · 104

Next steps

I High-performance implementation based on efficient dense linear
algebra packages.

I Solution of Vlasov–Maxwell equations.
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Conclusions and perspectives

I Applied math and HPC a strong need of magnetic fusion research

I Very complex models. Solid theory and verification strategy required.

I Gyrokinetic and kinetic simulations posed in 5D or 6D phase space
require a lot of resources and scale well with some effort.

I Verification and development based on modern software engineering
concepts needed.
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